• 博客访问: 137255
  • 博文数量: 68
  • 用 户 组: 普通用户
  • 注册时间: 2008-05-04 11:19
个人简介

暂无介绍

ITPUB论坛APP

ITPUB论坛APP



APP发帖 享双倍积分

文章分类
文章存档

2010年(35)

2009年(32)

2008年(1)

我的朋友
微信关注

IT168企业级官微



微信号:IT168qiye



系统架构师大会



微信号:SACC2013

订阅
热词专题

分类: Oracle

SUMMARY:

First determine which latch id(ADDR) are interesting by examining the number of
sleeps for this latch. The higher the sleep count, the more interesting the
latch id(ADDR) is:

SQL> select CHILD# "cCHILD"
, ADDR "sADDR"
, GETS "sGETS"
, MISSES "sMISSES"
, SLEEPS "sSLEEPS"
from v$latch_children
where name = 'cache buffers chains'
order by 5, 1, 2, 3;


Run the above query a few times to to establish the id(ADDR) that has the most
consistent amount of sleeps. Once the id(ADDR) with the highest sleep count is found
then this latch address can be used to get more details about the blocks
currently in the buffer cache protected by this latch.
The query below should be run just after determining the ADDR with
the highest sleep count.

SQL> column segment_name format a35
select /*+ RULE */
e.owner ||'.'|| e.segment_name segment_name,
e.extent_id extent#,
x.dbablk - e.block_id + 1 block#,
x.tch,
l.child#
from
sys.v$latch_children l,
sys.x$bh x,
sys.dba_extents e
where
x.hladdr = '&ADDR' and
e.file_id = x.file# and
x.hladdr = l.addr and
x.dbablk between e.block_id and e.block_id + e.blocks -1
order by x.tch desc ;

Example of the output :SEGMENT_NAME EXTENT# BLOCK# TCH CHILD#
-------------------------------- ------------ ------------ ------ ----------
SCOTT.EMP_PK 5 474 17 7,668
SCOTT.EMP 1 449 2 7,668


Depending on the TCH column (The number of times the block is hit by a SQL
statement), you can identify a hotblock. The higher the value of the TCH column,
the more frequent the block is accessed by SQL statements.

In this Document
Goal
Solution
References


Applies to:

Oracle Server - Enterprise Edition
Information in this document applies to any platform.

Goal

How to identify blocks which cause latch contention on the 'cache buffers chains' latch.
How to identify a hot block within the database buffer cache.

Solution

Possible hot blocks in the buffer cache normally can be identified by a high or
rapid increasing wait count on the CACHE BUFFERS CHAINS latch.

This latch is acquired when searching for data blocks cached in the buffer cache.
Since the Buffer cache is implemented as a sum of chains of blocks, each of those
chains is protected by a child of this latch when needs to be scanned. Contention
in this latch can be caused by very heavy access to a single block. This can
require the application to be reviewed.

To solve a hot block, the application maybe need to be reviewed.

By examining the waits on this latch, information about the segment and the
specific block can be obtained using the following queries.

First determine which latch id(ADDR) are interesting by examining the number of
sleeps for this latch. The higher the sleep count, the more interesting the
latch id(ADDR) is:

SQL> select CHILD# "cCHILD"
, ADDR "sADDR"
, GETS "sGETS"
, MISSES "sMISSES"
, SLEEPS "sSLEEPS"
from v$latch_children
where name = 'cache buffers chains'
order by 5, 1, 2, 3;

Run the above query a few times to to establish the id(ADDR) that has the most
consistent amount of sleeps. Once the id(ADDR) with the highest sleep count is found
then this latch address can be used to get more details about the blocks
currently in the buffer cache protected by this latch.
The query below should be run just after determining the ADDR with
the highest sleep count.

SQL> column segment_name format a35
select /*+ RULE */
e.owner ||'.'|| e.segment_name segment_name,
e.extent_id extent#,
x.dbablk - e.block_id + 1 block#,
x.tch,
l.child#
from
sys.v$latch_children l,
sys.x$bh x,
sys.dba_extents e
where
x.hladdr = '&ADDR' and
e.file_id = x.file# and
x.hladdr = l.addr and
x.dbablk between e.block_id and e.block_id + e.blocks -1
order by x.tch desc ;

Example of the output :
SEGMENT_NAME EXTENT# BLOCK# TCH CHILD#
-------------------------------- ------------ ------------ ------ ----------
SCOTT.EMP_PK 5 474 17 7,668
SCOTT.EMP 1 449 2 7,668

Depending on the TCH column (The number of times the block is hit by a SQL
statement), you can identify a hotblock. The higher the value of the TCH column,
the more frequent the block is accessed by SQL statements.

In order to reduce contention for this object the following mechanisms can be put in place:

1) Examine the application to see if the execution of certain DML and SELECT statements
can be reorganized to eliminate contention on the object.

2) Decrease the buffer cache -although this may only help in a small amount of cases.

3) DBWR throughput may have a factor in this as well.
If using multiple DBWR's then increase the number of DBWR's.

4) Increase the PCTFREE for the table storage parameters via ALTER TABLE
or rebuild. This will result in less rows per block.

5) Consider implementing reverse key indexes
(if range scans aren't commonly used against the segment)
Related bugs :
Bug 3611471 : High latch waits for "cache buffers chain" latch possible originating from "kcbgtcr: kslbegin .."

30 min statspack shows
NoWait Waiter
Latch Name Where Misses Sleeps Sleeps
-------------------- -------------------------- ------- ---------- --------
cache buffers chains kcbgtcr: kslbegin excl 0 206,281 280,674

Bug 1967363 "CACHE BUFFERS CHAINS" LATCH CONTENTION AFTER UPGRADE
TO 8.1.7 FROM 8.0.6

The following query joins with DBA_OBJECTS :

SQL> with bh_lc as
(select /*+ ORDERED */
lc.addr, lc.child#, lc.gets, lc.misses, lc.immediate_gets,
lc.immediate_misses, lc.spin_gets, lc.sleeps,
bh.hladdr, bh.tch tch, bh.file#, bh.dbablk, bh.class,
bh.state, bh.obj
from
x$kslld ld,
v$session_wait sw,
v$latch_children lc,
x$bh bh
where lc.addr =sw.p1raw
and sw.p2= ld.indx
and ld.kslldnam='cache buffers chains'
and lower(sw.event) like '%latch%'
— and state='WAITING'
and bh.hladdr=lc.addr
)
select bh_lc.hladdr, bh_lc.tch, o.owner, o.object_name, o.object_type,
bh_lc.child#, bh_lc.gets,
bh_lc.misses, bh_lc.immediate_gets,
bh_lc.immediate_misses, spin_gets, sleeps
from
bh_lc,
dba_objects o
where bh_lc.obj = o.object_id(+)
union
select bh_lc.hladdr, bh_lc.tch, o.owner, o.object_name, o.object_type,
bh_lc.child#, bh_lc.gets, bh_lc.misses, bh_lc.immediate_gets,
bh_lc.immediate_misses, spin_gets, sleeps
from
bh_lc,
dba_objects o
where bh_lc.obj = o.data_object_id(+)
order by 1,2 desc;

[@more@]
阅读(4030) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~
评论热议
请登录后评论。

登录 注册