ITPub博客

首页 > 大数据 > Hadoop > Hadoop YARN中内存和CPU两种资源的调度和隔离

Hadoop YARN中内存和CPU两种资源的调度和隔离

Hadoop 作者:bestsong 时间:2014-03-03 12:35:38 0 删除 编辑
Hadoop YARN同时支持内存和CPU两种资源的调度(默认只支持内存,如果想进一步调度CPU,需要自己进行一些配置),本文将介绍YARN是如何对这些资源调度和隔离的。
    在YARN中,资源管理由ResourceManager和NodeManager共同完成,其中,ResourceManager中的调度器负责资源的 分配,而NodeManager则负责资源的供给和隔离。ResourceManager将某个NodeManager上资源分配给任务(这就是所谓的 “资源调度”)后,NodeManager需按照要求为任务提供相应的资源,甚至保证这些资源应具有独占性,为任务运行提供基础的保证,这就是所谓的资源 隔离。
    关于Hadoop YARN资源调度器的详细介绍,可参考其他日志。
 在正式介绍具体的资源调度和隔离之前,先品味一下内存和CPU这两种资源的特点,这是两种性质不同的资源。内存资源的多少会会决定任务的生死,如果内存不够,任务可能会运行失败;相比之下,CPU资源则不同,它只会决定任务的快慢,不会对生死产生影响。
    YARN中内存资源的调度和隔离
    基于以上考虑,YARN允许用户配置每个节点上可用的物理内存资源,注意,这里是“可用的”,因为一个节点上的内存会被若干个服务共享,比如一部分分给YARN,一部分给HDFS,一部分给HBase等,YARN配置的只是自己可以使用的,配置参数如下:
 (1)yarn.nodemanager.resoure.memory-mb
    表示该节点上YARN可使用的物理内存总量,默认是8192(MB),注意,如果你的节点内存资源不够8GB,则需要调减小这个值,而YARN不会智能的探测节点的物理内存总量。
    (2)yarn.nodemanager.vmem-pmem-ratio
 任务每使用1MB物理内存,最多可使用虚拟内存量,默认2.1
    (3)yarn.nodemanager.pmem-check-enabled
    是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认为true。
    (4)yarn.nodemanger.vmem-pmem-ratio
    是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认为true。
    (5)yarn.scheduler.minimum-allocation-mb
    单个任务可申请的最少物理内存量,默认1024(MB),如果一个任务申请的物理内存量小于该值,则该对应的值改为这个数。
    (6)yarn.scheduler.maximum-allocation-mb
    单个任务可申请的最多物理内存量,默认是8192(MB)。
    默认情况下,YARN采用了线程监控的方法判断任务是否超量使用内存,一旦发现超量,则直接将其杀死。由于Cgroups对内存的控制缺乏灵活性(即任务 任何时刻不能超过内存上限,如果超过,则直接将其杀死或者报OOM),而JAVA进程在创建瞬间内存将翻倍,之后骤降到正常值,这种情况下,采用线程监控 的方式更加灵活(当发现进程树内存瞬间翻倍超过设定值时,可认为是正常现象,不会将任务杀死),因此YARN未提供Cgroups内存隔离机制。
    YARN中CPU资源的调度和隔离
    在YARN中,CPU资源的组织方式仍在探索中,目录(2.2.0版本)只是一个初步的,非常粗料度的实现方式,更细粒度的CPU划分方式已经提出来了,正在完善和实现中。
    目前的CPU被划分成虚拟CPU(CPU Virtual Core),这里的虚拟CPU是YARN自己引入的概念,初衷是,考虑到不同节点的CPU性能可能不同,每个CPU具有的计算能力也是不一样的,比如某个 物理CPU的计算能力可能是另外一个物理CPU的2倍,这时候,你可以通过第一个物理CPU多配置几个虚拟CPU弥补这种差异。用户提交作业时,可以指定 每个任务需要的虚拟CPU个数。在YARN中,CPU相关参数如下:
    (1)yarn.nodemanager.resource.cpu-vcores
    表示该节点上YARN可使用的虚拟CPU个数,默认是8,注意,目前推荐将该值设置为与物理CPU核数数目相同。如果你的节点CPU核数不够8个,则需要减小这个值,而YARN不会智能的探测节点的物理CPU总数。
    (2)yarn.scheduler.minimum-allocation-vcores
    单个任务可申请的最小虚拟CPU个数,默认是1,如果一个任务申请的CPU个数小于该数,则该对应的值改为这个数。
    (3)yarn.scheduler.maximum-allocation-vcores
    单个任务可申请的最大虚拟CPU个数,默认是32

    默认情况下,YARN是不会对CPU资源进行调度的,你需要配置相应的资源调度器让你支持,具体参考另外日志。
    默认情况下,NodeManager不会对CPU进行任务隔离,你可以通过启用Cgroups让你支持CPU隔离。
    由于CPU资源的独特性,目前这种CPU分配方式仍然是粗粒的。举个例子,很多任务可能是IO密集型的,消耗的内存资源非常少,如果此时你为它分配一个 CPU,则是一种严重浪费,你完全可以让他与其他几个任务共用一个CPU,也就是说,我们需要支持更多粒度的CPU表达方式。
    借签亚马逊EC2中CPU资源的划分方式,即提出了CPU最小单位为EC2 Compute Unit(ECU),一个ECU代表相当于1.0-1.2GHZ 2007 Opteron or 2007 Xeon处理器的处理能力。YARN提出了CPU最小单位YARN Compute Unit(YCU),目前这个数是一个整数,默认是720,由参数yarn.nodemanager.resource.cpu-ycus-per- core设置,表示一个CPU core具备的计算能力(该feature在2.2.0版本中并不存在,可能增加到2.3.0版本中),这样,用户提交作 业时,直接指定需要的YCU即可,比如指定值为360,表示1/2个CPU core,实际表现为,只使用一个CPU core的1/2计算时间。注意在操作系统层,CPU资源是按照时间片分配的,你可以说,一个进程使用1/3的CPU时间片,或者1/5的时间片。对于 CPU资源划分和调度的探讨,可以查看相关资料。
<!-- 正文结束 -->

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/8479061/viewspace-1114284/,如需转载,请注明出处,否则将追究法律责任。

下一篇: 没有了~
请登录后发表评论 登录
全部评论

最新文章