# Python 计算机视觉（十五）—— 图像特效处理

IT生活 作者：专注的阿熊 时间：2021-11-22 17:44:01 0 删除 编辑

"""

Author:XiaoMa

date:2021/11/16

"""

import cv2

import numpy as np

import math

import matplotlib.pyplot as plt

img0 = cv2.imread('E:\From Zhihu\For the desk\cvfifteen1.jpg')

img1 = cv2.cvtColor(img0, cv2.COLOR_BGR2GRAY)

h, w = img0.shape[:2]

print(h, w)

cv2.imshow("W0", img0)

cv2.imshow("W1", img1)

cv2.waitKey(delay = 0)

# 毛玻璃特效

img2 = np.zeros((h - 6, w - 6, 3), np.uint8)        # 生成的全零矩阵考虑到了随机数范围，变小了

for i in range(0, h - 6):                   # 防止下面的随机数超出边缘

for j in range(0, w - 6):

index = int(np.random.random()*6)   #0~6 的随机数

(b, g, r) = img0[i + index, j + index]

img2[i, j] = (b, g, r)

cv2.imshow("W2", img2)

cv2.waitKey(delay = 0)

# 浮雕特效 ( 需要对灰度图像进行操作 )

img3 = np.zeros((h, w, 3), np.uint8)

for i in range(0, h):

for j in range(0, w - 2):                # 2 的效果和上面一样

grayP0 = int(img1[i, j])

grayP1 = int(img1[i, j + 2])         # 取与前一个像素点相邻的点

newP = grayP0 - grayP1 + 150         # 得到差值，加一个常数可以增加浮雕立体感

if newP > 255:

newP = 255

if newP < 0:

newP = 0

img3[i, j] = newP

cv2.imshow("W3", img3)

cv2.waitKey(delay = 0)

# 素描特效

img4 = 255 - img1                                               # 对原灰度图像的像素点进行反转

blurred = cv2.GaussianBlur(img4, (21, 21), 0)                   # 进行高斯模糊

inverted_blurred = 255 - blurred                                # 反转

img4 = cv2.divide(img1, inverted_blurred, scale = 127.0)        # 灰度图像除以倒置的模糊图像得到铅笔素描画

cv2.imshow("W4", img4)

cv2.waitKey(delay = 0)

# 怀旧特效

img5 = np.zeros((h, w, 3), np.uint8)

for i in range(0, h):

for j in range(0, w):

B = 0.272 * img0[i, j][2] + 0.534 * img0[i, j][1] + 0.131 * img0[i, j][0]

G = 0.349 * img0[i, j][2] + 0.686 * img0[i, j][1] + 0.168 * img0[i, j][0]

R = 0.393 * img0[i, j][2] + 0.769 * img0[i, j][1] + 0.189 * img0[i, j][0]

if B > 255:

B = 255

if G > 255:

G = 255

if R > 255:

R = 255

img5[i, j] = np.uint8((B, G, R))

cv2.imshow("W5", img5)

cv2.waitKey(delay = 0)

# 流年特效

img6 = np.zeros((h, w, 3), np.uint8)

for i in range(0, h):

for j in range(0, w):

B = math.sqrt(img0[i, j][0]) *14       # B 通道的数值开平方乘以参数 14

G = img0[i, j][1]

R = img0[i, j][2]

if B > 255:

B = 255

img6[i, j] = np.uint8((B, G, R))

cv2.imshow("W6", img6)

cv2.waitKey(delay = 0)

# 水波特效

img7 = np.zeros((h, w, 3), np.uint8)

wavelength = 20                                 # 定义水波特效波长

amplitude = 30                                  # 幅度

phase = math.pi / 4                             # 相位

centreX = 0.5                                   # 水波中心点 X

centreY = 0.5                                   # 水波中心点 Y

radius = min(h, w) / 2

icentreX = w*centreX                            # 水波覆盖宽度

icentreY = h*centreY                            # 水波覆盖高度

for i in range(0, h):

for j in range(0, w):

dx = j - icentreX

dy = i - icentreY

distance = dx * dx + dy * dy

x = j

y = i

else:

# 计算水波区域

distance = math.sqrt(distance)

amount = amplitude * math.sin(distance / wavelength * 2 * math.pi - phase)

amount = amount * wavelength / (distance + 0.0001)

x = j + dx * amount

y = i + dy * amount

# 边界判断

if x < 0:

x = 0

if x >= w - 1:

x = w - 2

if y < 0:

y = 0

if y >= h - 1:

y = h - 2

p = x - int(x)

q = y - int(y)

# 图像水波赋值

img7[i, j, :] = (1 - p) * (1 - q) * img0[int(y), int(x), :] + p * (1 - q) * img0[int(y), int(x), :]

+ (1 - p) * q * img0[int(y), int(x), :] + p * q * img0[int(y), int(x), :]

cv2.imshow("W7", img7)

cv2.waitKey(delay = 0)

# 卡通特效

num_bilateral = 7                                      # 定义双边滤波的数目

for i in range(num_bilateral):                         # 双边滤波处理

img_color = cv2.bilateralFilter(img0, d = 9, sigmaColor = 5, sigmaSpace = 3)

img_blur = cv2.medianBlur(img1, 7)                     # 中值滤波处理

img_edge = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, blockSize = 5, C = 2) # 边缘检测及自适应阈值化处理

img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)  # 转换回彩色图像

img8 = cv2.bitwise_and(img0, img_edge)          # 图像的与运算

cv2.imshow('W8', img8)

cv2.waitKey(delay = 0)

# 将所有图像保存到一张图中

plt.rcParams['font.family'] = 'SimHei'

imgs = [img0, img1, img2, img3, img4, img5, img6, img7, img8]

titles =外汇跟单gendan5.com [' 原图 ', ' 灰度图 ', ' 毛玻璃特效 ', ' 浮雕特效 ', ' 素描特效 ', ' 怀旧特效 ', ' 流年特效 ', ' 水波特效 ', ' 卡通特效 ']

for i in range(9):

imgs[i] = cv2.cvtColor(imgs[i], cv2.COLOR_BGR2RGB)

plt.subplot(3, 3, i + 1)

plt.imshow(imgs[i])

plt.title(titles[i])

plt.xticks([])

plt.yticks([])

plt.suptitle(' 图像特效处理 ')

plt.savefig('E:\From Zhihu\For the desk\cvfifteenresult.jpg', dpi = 1080)

plt.show()

• 博文量
248
• 访问量
137512