# 感知器算法及其python 实现 V2.0

IT生活 作者：专注的阿熊 时间：2021-11-18 17:26:03 0 删除 编辑

import matplotlib.pyplot as plt

import numpy as np

from random import uniform, seed, shuffle ,sample

import math

import logging

# from random import random

'''JY_Toolkit.py'''

class Jy_makeDataset(object):

def random_state(random_seed):

seed(int(random_seed))

def draw_HalfMoon(n_sample: int = 1000,       # 样本点个数，两个分类一共 n_sample

w: float = 1,              # 半月的线宽

radius: float = 4,         # 半月的半径

hor_distance: float = 4,   # Horizontal direction distance for two point

ver_distance: float = 0,   # Vertical direction distance for two point

slope: float = 0,          # 半月倾斜的角度   [0 ~ 180]

positive_val: int = 1,

negative_val: int = -1,

):

slope %= 180            # make the `slope`  between 0 and 180

# n_sample 和样本分为两类每个样本 n_sample / 2

each_m = n_sample//2

# circle origin point of positive moon [x , y]

p_origin = [1 + w/2 + radius, 1 + w/2 + radius + ver_distance]

# circle origin point of negative moon [x , y]

n_origin = [p_origin[0] + hor_distance, p_origin[1] - ver_distance]

# product positive point

p_sample = []

n_sample = []

for i in range(each_m):

# Randomly generate l

temp_l = radius + uniform(-(w/2), w/2)

# Randomly generate angle i.e. theta

temp_angle = uniform(slope, slope + 180)

point_x = p_origin[0] + temp_l*math.cos(math.pi/180*temp_angle)

point_y = p_origin[1] + temp_l*math.sin(math.pi/180*temp_angle)

p_sample.append([point_x, point_y, positive_val])

for i in range(each_m):

# Randomly generate l

temp_l = radius + uniform(-(w/2), w/2)

# Randomly generate angle i.e. theta , but the angle of negative point should between `slope + 180` and `slope + 360`

temp_angle = uniform(slope + 180, slope + 360)

point_x = n_origin[0] + temp_l*math.cos(math.pi/180*temp_angle)

point_y = n_origin[1] + temp_l*math.sin(math.pi/180*temp_angle)

n_sample.append([point_x, point_y, negative_val])

sample_points = p_sample + n_sample

shuffle(sample_points)

sample_points = np.array(sample_points)

return sample_points[:, 0:2], sample_points[:, 2]

pass

class Jy_dataSetProcess(object):

def Jy_train_test_split(X,

y,

test_size : 0.2,

):

data = np.column_stack((X,y))

if test_size >= 1 and test_size <= 0:

logging.exception('test_size must be greater than 0 less than 1, we will assign test_size value of 0.2')

test_size = 0.2

sample_count = int(len(data)*test_size)

'''

分离思路：

先将输入的数据集打乱，外汇跟单gendan5.com然后取前 test_size 部分为测试集，后部分为训练集

'''

shuffle(data)

X_test = data[0:sample_count-1]

X_train = data[sample_count:]

return X_train[:,0:2],  X_test[:,0:2] ,X_train[:,2] , X_test[:,2]

pass

if __name__ == '__main__':

random_seed = 52

Jy_makeDataset.random_state(random_seed)

np_data, label = Jy_makeDataset.draw_HalfMoon(n_sample=2000)

p_point_x1 = [np_data[i][0] for i in range(len(np_data)) if label[i] == 1]

p_point_x2 = [np_data[i][1] for i in range(len(np_data)) if label[i] == 1]

n_point_x1 = [np_data[i][0] for i in range(len(np_data)) if label[i] == -1]

n_point_x2 = [np_data[i][1] for i in range(len(np_data)) if label[i] == -1]

fig = plt.figure(num="HalfMoons", figsize=(8, 8))

ax1.scatter(p_point_x1, p_point_x2, c='red')

ax1.scatter(n_point_x1, n_point_x2, c='blue')

plt.show()

print(np_data)

• 博文量
248
• 访问量
137512