ITPub博客

首页 > 大数据 > Hadoop > 大数据工程师需要学习哪些技术?

大数据工程师需要学习哪些技术?

原创 Hadoop 作者:金罗老师 时间:2018-12-15 18:22:38 0 删除 编辑

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。



1、 数据体量巨大。从TB级别,跃升到PB级别。

2、 数据类型繁多,涉及网络日志、视频、图片、地理位置等信息。

3、 价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。

4、 处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。

大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量数据从中获取有价值的信息,也体现在如何加强大数据技术研发,抢占时代发展的前沿。


对“大数据”有了清晰的概念之后,

接下来我们来了解一下大数据工程师需要学习哪些知识?


互联网科技发展蓬勃兴起,人工智能时代来临,抓住下一个风口。为帮助那些往想互联网方向转行想学习,却因为时间不够,资源不足而放弃的人。我自己整理的一份最新的大数据进阶资料和高级开发教程,大数据学习群:868847735   欢迎进阶中和进想深入大数据的小伙伴加入。


大数据技术学习主要是分三部分

一、编程基础(java/linux)

二、大数据技术(JAVA、LINUX、HADOOP、HIVE、OOZIE、WEB、SPARK、SCALA、KAFKA、HBASE、PYTHON、FLUME)

三、实训项目(真实的大数据项目)


从入门到进阶,小编大致罗列了8大学习阶段:

第一阶段 Java语言基础

Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类

第二阶段 HTML、CSS与JavaScript

PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生JavaScript交互功能开发、Ajax异步交互、jQuery应用

第三阶段 JavaWeb和数据库

数据库、JavaWeb开发核心、JavaWeb开发内幕

第四阶段 Linux&Hadoopt体系

Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架

第五阶段 实战(一线公司真实项目)

数据获取、数据处理、数据分析、数据展现、数据应用

第六阶段 Spark生态体系

Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算


第七阶段 Storm生态体系

storm技术架构体系、Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、

实战一:日志告警系统项目

实战二:猜你喜欢推荐系统实战

第八阶段 大数据分析 —AI(人工智能)

Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习

1、Python机器学习

2、图像识别&神经网络、自然语言处理&社交网络处理、实战项目:户外设备识别分析


大数据学习涉及技术:

1、数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

2、数据存取:关系数据库、NOSQL、SQL等。

3、基础架构:云存储、分布式文件存储等。

4、数据处理:自然语言处理是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解,也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能(Artificial Intelligence)的核心课题之一。

5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

6、数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)

7、模型预测:预测模型、机器学习、建模仿真。

8、结果呈现:云计算、标签云、关系图等。


来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/31561003/viewspace-2285358/,如需转载,请注明出处,否则将追究法律责任。

请登录后发表评论 登录
全部评论

注册时间:2018-11-05

  • 博文量
    62
  • 访问量
    61722