ITPub博客

首页 > IT职业 > IT职场 > 简化 MongoDB 关联运算

简化 MongoDB 关联运算

原创 IT职场 作者:嘟嘟是只喵 时间:2018-12-31 22:27:19 0 删除 编辑

【摘要】

        MongoDB提供的 lookup 对多表关联实现了基本的支持,但面对一些比较复杂的关联情况,往往会遇到 shell 脚本过于复杂的问题。而集算器 SPL 语言,则因其离散性、易用性恰好能弥补 Mongo 这方面的不足。若想了解更多,请前往乾学院!


        MongoDB属于 NoSql 中的基于分布式文件存储的文档型数据库,这种bson格式的文档结构,更加贴近我们对物体各方面的属性描述。而在使用 MongoDB 存储数据的过程中,有时候难免需要进行关联表查询。自从 MongoDB 3.2 版本后,它提供了 $lookup 进行关联表查询,让查询功能改进了不少。但在实现应用场景中,所遇到的环境错综复杂,问题解决也非易事,脚本书写起来也并不简单。好在有了集算器 SPL 语言的协助,处理起来就相对容易多了。

        本文我们将针对 MongoDB 在关联运算方面的问题进行讨论分析,并通过集算器 SPL 语言加以改进,方便用户使用 MongoDB。讨论将分为以下几个部分:
1. 关联嵌套结构情况 1…………………………………………….. 1
2. 关联嵌套结构情况 2…………………………………………….. 3
3. 关联嵌套结构情况 3…………………………………………….. 4
4. 两表关联查询………………………………………………………. 6
5. 多表关联查询………………………………………………………. 8
6. 关联表中的数组查找…………………………………………… 10
Java 应用程序调用 DFX 脚本…………………………………… 12

1.关联嵌套结构情况 1

两个关联表,表 A 与表 B 中的内嵌文档信息关联, 且返回的信息在内嵌文档中。表 childsgroup 字段childs是嵌套数组结构,需要合并的信息 name 在其下。

测试数据:

history:

image.png

childsgroup:

image.png

 

表History中的child_id与表childsgroup中的childs.id关联,希望得到下面结果:

{

    "_id" : ObjectId("5bab2ae8ab2f1bdb4f434bc3"),

    "id" : "001",

    "history" : "today worked",

    "child_id" : "ch001",

    "childInfo" :

    {

         "name" : "a",

        "mobile" : 1111

    }

   ………………

}

Mongo 脚本

image.png

       这个脚本用了几个函数lookup、pipeline、match、unwind、replaceRoot处理,一般 mongodb 用户不容易写出这样复杂脚本;那么我们再看看 spl 脚本是如何实现的:

SPL脚本 ( 文件名:childsgroup.dfx)

image.png  

关联查询结果:

image.png

脚本说明: 
       A1:连接 mongodb 数据库。 
       A2:获取 history 表中的数据。 
       A3:获取 childsgroup 表中的数据。 
       A4:将 childsgroup 中的 childs 数据提取出来合并成序表。 
       A5:表 history 中的 child_id 与表 childs 中的 id 关联查询,追加 info 字段, 返回序表。 
       A6:关闭数据库连接。

       相对 mongodb 脚本写法,SPL 脚本的难度降低了不少,思路也更加清晰,也不需要再去熟悉有关 mongo 函数的用法,以及如何去组合处理数据等,节约了不少时间。

2.关联嵌套结构情况 2

两个关联表,表 A 与表 B 中的内嵌文档信息关联, 将信息合并到内嵌文档中。表 txtPost 字段 comment 是嵌套数组结构,需要把 comment_content 合并到其下。

txtComment:

image.png

txtPost

image.png

期望结果:

image.png

Mongo 脚本

image.png

表txtPost 按 comment 拆解成记录,然后与表 txtComment 关联查询,将其结果放到数组中,再将数组拆解成记录,将comment_content 值移到 comment 下,最后分组合并。

SPL 脚本:

image.png  

关联查询结果:

image.png

脚本说明:
      A1:连接 mongodb 数据库。
      A2:获取 txtPost 表中的数据。
      A3:获取 txtComment 表中的数据。
      A4:将序表 A2 下的 comment 与 post_no 组合成序表,其中 post_no 改名为 pno。
      A5:序表 A4 通过 comment_no 与序表 A3 关联,追加字段 comment_content,将其改名为 Content。
      A6:按 pno 分组返回序表,~ 表示当前记录。
      A7:关闭数据库连接。

      Mongo、SPL 脚本实现方式类似,都是把嵌套结构的数据转换成行列结构的数据,再分组合并。但 SPL 脚本的实现更简单明了。

3.关联嵌套结构情况 3

两个关联表,表 A 与表 B 中的内嵌文档信息关联, 且返回的信息在记录上。表collection2字段product是嵌套数组结构,返回的信息是isCompleted等字段。

测试数据:
collection1: 

   _id: '5bc2e44a106342152cd83e97', 
   description 
    { 
      status: 'Good', 
      machine: 'X' 
     }, 
   order: 'A', 
   lot: '1' 
   }; 
   
collection2: 

   _id: '5bc2e44a106342152cd83e80', 
   isCompleted: false, 
   serialNo: '1', 
   batchNo: '2', 
   product: [ // note the subdocuments here 
        {order: 'A', lot: '1'}, 
        {order: 'A', lot: '2'} 
    ] 
}

期待结果  

   _id: 5bc2e44a106342152cd83e97, 
   description: 
       { 
         status: 'Good', 
         machine: 'X', 
       }, 
   order: 'A', 
   lot: '1' , 
   isCompleted: false, 
   serialNo: '1', 
   batchNo: '2' 
}

Mongo 脚本

image.png

lookup 两表关联查询,首个 addFields获取isCompleted数组的第一个记录,后一个addFields 转换成所需要的几个字段信息

SPL脚本:

image.png  

脚本说明:
      A1:连接 mongodb 数据库。
      A2:获取 collection1 表中的数据。
      A3:获取 collection2 表中的数据。
      A4:根据条件 order, lot 从序表 A2 中查询记录,然后追加序表 A3 中的字段 serialNo, batchNo,返回合并后的序表。
      A5:关闭数据库连接。
 
      Mongo、SPL 脚本都实现了预期的结果。SPL 很清晰地实现了从数据记录中的内嵌结构中筛选,将符合条件的数据合并成新序表。

4.两表关联查询

从关联表中选择所需要的字段组合成新表。

Collection1:

image.png

  collection2:

image.png

期望结果:

image.png

Mongo 脚本

image.png

lookup 两表进行关联查询,redact 对记录根据条件进行遍历处理,project 选择要显示的字段。

SPL脚本:

image.png  

脚本说明:
      A1:连接 mongodb 数据库。
      A2:获取c1表中的数据。
      A3:获取c2表中的数据。
      A4:两表按字段 user1,user2 关联,追加序表 A3 中的 output 字段,返回序表。
      A5:关闭数据库连接。

      Mongo、SPL 脚本都实现了预期的结果。SPL 通过 join 把两个关联表不同的字段合并成新表,与关系数据库用法类似。

5.多表关联查询

多于两个表的关联查询,结合成一张大表。

Doc1:

image.png

  Doc2:

image.png

  Doc3:

image.png

合并后的结果:
{
    "_id" : ObjectId("5901a4c63541b7d5d3293766"),
    "firstName" : "shubham",
    "lastName" : "verma",
    "address" : {
        "address" : "Gurgaon"
    },
    "social" : {
        "fbURLs" : " ",
        "twitterURLs" : " "
    }
}

Mongo 脚本

image.png  

      由于 Mongodb 数据结构原因,写法也多样化,展示也各不相同。

SPL脚本:

image.png  

      Mongo、SPL 脚本都实现了预期的结果。此 SPL 脚本与上面例子类似,只是多了一个关联表,每次 join 就新增加字段,最后叠加构成一张大表。

      SPL 脚本的简洁性、统一性非常明显。

6.关联表中的数组查找

从关联表记录数据组中查找符合条件的记录, 用给定的字段组合成新表。

测试数据:

users:

image.png

workouts:

image.png

期望结果:

image.png

Mongo 脚本

image.png

把关联表 users,workouts 查询结果放到数组中,再将数组拆解,提升子记录的位置,去掉不需要的字段。  

SPL脚本 (users.dfx):

image.png  

脚本说明:
      A1:连接 mongodb 数据库。
      A2:获取users表中的数据。
      A3:获取workouts表中的数据。
      A4:查询序表 A3 的 _id 值存在于序表A2中 workouts 数组的记录, 并追加 name 字段。返回合并的序表。
      A5:关闭数据库连接。
      由于需要获取序列的交集不为空为条件,故将 _id 转换成序列。
      Mongo、SPL 脚本都实现了预期的结果。从脚本实现过程来看,SPL 集成度高而又不失灵活性,让程序简化了不少。

7.Java 应用程序调用 DFX 脚本

      在通过 SPL 脚本对 MongoDB 数据进行了关联计算后,其结果可以被 java 应用程序很容易地使用。集算器提供了 JDBC 驱动程序,用 JDBC 存储过程方式访问,与调用存储过程相同。(JDBC 具体配置参考《集算器教程》中的“JDBC基本使用”章节)

   Java调用主要过程如下:

   public void testUsers(){

       Connection con = null;

       com.esproc.jdbc.InternalCStatement st;

       try{

         //建立连接

         Class.forName("com.esproc.jdbc.InternalDriver");

         con= DriverManager.getConnection("jdbc:esproc:local://");

         //调用存储过程,其中 users是 dfx 的文件名

         st =(com. esproc.jdbc.InternalCStatement)con.prepareCall("call users> ()");

         //执行存储过程

         st.execute();

         //获取结果集

         ResultSet rs = st.getResultSet();

          。。。。。。。

   catch(Exception e){

         System.out.println(e);

   }

       可以看到,使用时按标准的 JDBC 方法操作,集算器很方便嵌入到 Java 应用程序中。同时,集算器也支持 ODBC 驱动,因此集成到其它支持 ODBC 的语言也非常容易。

       Mongo 存储的数据结构相对关系数据库更复杂、更灵活,其提供的查询语言也非常强、适应面广,同时需要了解函数也不少,函数之间的结合更是变化无穷,因此要熟练掌握并应用也并非易事。集算器的离散性、易用性恰好能弥补 Mongo 这方面的不足,在降低 mongo 学习成本及使用复杂度、难度的同时,让 mongo 的功能得到更充分的展现。


来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/31543054/viewspace-2287073/,如需转载,请注明出处,否则将追究法律责任。

请登录后发表评论 登录
全部评论

注册时间:2018-06-20

  • 博文量
    204
  • 访问量
    110065