ITPub博客

首页 > 大数据 > 数据挖掘 > 内存条的一些认识

内存条的一些认识

数据挖掘 作者:孙圣贤 时间:2012-12-17 20:30:34 0 删除 编辑

内存条是连接CPU 和其他设备的通道,起到缓冲和数据交换作用。 当CPU在工作时,需要从硬盘等外部存储器上读取数据,但由于硬盘这个“仓库”太大,加上离CPU也很“远”,运输“原料”数据的速度就比较慢,导致CPU的生产效率大打折扣!为了解决这个问题,人们便在CPU与外部存储器之间,建了一个“小仓库”—内存。

内存条简介

  

内存是电脑必不可少的组成部分之一,CPU可通过数据总线对内存寻址。以前的电脑主板上有主内存,内存条是主内存的扩展。现在的电脑主板,内存完全依赖内存条。所有外存上的内容必须通过内存才能发挥作用。虽然某些情况下需要在内存中建立虚拟盘,在电脑中内存通常不起数据仓库的作用。

内存的作用与分类

内存的作用

内存是电脑中的主要部件,它是相对于外存而言的。我们平常使用的程序,如WindowsXP系统、还有Windows2008,打字软件、游戏软件等,一般都是安装在硬盘等外存上的,但仅此是不能使用其功能的,必须把它们调入内存中运行,才能真正使用其功能,我们平时输入一段文字,或玩一个游戏,其实都是在内存中进行的。通常我们把要永久保存的、大量的数据存储在外存上,而把一些临时的或少量的数据和程序放在内存上。

内存的分类

内存分为DRAM和ROM两种,前者又叫动态随机存储器,它的一个主要特征是断电后数据会丢失,我们平时说的内存就是指这一种;后者又叫只读存储器,我们平时开机首先启动的是存于主板上ROM中的BIOS程序,然后再由它去调用硬盘中的Windows,ROM的一个主要特征是断电后数据不会丢失。

  根据内存条上的引脚多少,我们可以把内存条分为30线、72线、168线等几种。30线与72线的内存条又称为单列存储器模块SIMM,(SIMM就是一种两侧金手指都提供相同信号的内存结构,)168线的内存条又称为双列存储器模块DIMM。目前30线内存条已经没有了;前两年的流行品种是72线的内存条,其容量一般有4兆、8兆、16兆和32兆等几种;目前市场的主流品种是168线内存条,168线内存条的容量一般有16兆、32兆、64兆、128兆等几种,一般的电脑插一条就OK了,不过,只有基于VX、TX、BX芯片组的主板才支持168线的内存条。

什么是EDO和SDRAM

前面我们已经按引脚数的多少把内存条分为30、72和168线等几种,其实,它们在结构和性能上还有着本质的区别。

譬如,72线内存条是一种EDO内存,而现今主流的168线内存条几乎清一色又都是SDRAM内存;目前,EDO内存的存取速度基本保持在60纳秒左右,能够适应75兆赫兹的外频,但跑83兆赫兹则有点勉为其难了;而SDRAM内存的存取速度一般能达到10纳秒左右,能够适应100兆赫兹以上的外频。所以从97年底起EDO内存已逐步被SDRAM所取代,至今,几乎已无人再用EDO来装机了,只有升级扩充旧电脑内存时还用得着它。

  其实,EDO内存被SDRAM所取代有其必然性,因为,目前市场上主流CPU的主频已高达450兆赫兹,未来CPU的主频还会越来越高。但由于传统内存条的读写速度远远跟不上CPU的速度,迫使CPU插入等待指令周期,从而大大降低了电脑的整体性能。为了缓解这个内存瓶颈的问题,我们就必须采用新的内存结构,即SDRAM。因为,从理论上说,SDRAM与CPU频率同步,共享一个时钟周期。SDRAM内含两个交错的存储阵列,当CPU从一个存储阵列访问数据的同时,另一个已准备好读写数据,通过两个存储阵列的紧密切换,读取效率得到成倍提高。目前,最新的SDRAM的存储速度已高达5纳秒,所以,SDRAM已成为近期内存发展的主流当然,EDO内存也并没有完全举手投降,相反,凭借其出色的视频特性和低廉的价格,在显示内存等领域仍是连连得手,众多低档显卡更是无一例外地采用EDO内存。另外,许多硬盘、光驱和打印机也是采用EDO缓存,可见,EDO内存还真是宝刀不老啊

RAM有些像教室里的黑板,上课时老师不断地往黑板上面写东西,下课以后全部擦除。RAM要求每时每刻都不断地供电,否则数据会丢失。如果在关闭电源以后RAM中的数据也不丢失就好了,这样就可以在每一次开机时都保证电脑处于上一次关机的状态,而不必每次都重新启动电脑,重新打开应用程序了。但是RAM要求不断的电源供应,那有没有办法解决这个问题呢?随着技术的进步,人们想到了一个办法,即给RAM供应少量的电源保持RAM的数据不丢失,这就是电脑的待机功能,特别在Win2000里这个功能得到了很好的应用,休眠时电源处于连接状态,但是耗费少量的电能。

  按内存条的接口形式,常见内存条有两种:单列直插内存条(SIMM),和双列直插内存条(DIMM)。SIMM内存条分为30线,72线两种。DIMM内存条与SIMM内存条相比引脚增加到168线。DIMM可单条使用,不同容量可混合使用,SIMM必须成对使用。

  按内存的工作方式,内存又有FPA EDO DRAM和SDRAM(同步动态RAM)等形式。

FPM(FAST PAGE MODE)RAM 快速页面模式随机存取存储器:这是较早的电脑系统普通使用的内存,它每隔三个时钟脉冲周期传送一次数据。

  EDO(EXTENDED DATA OUT)RAM 扩展数据输出随机存取存储器:EDO内存取消了主板与内存两个存储周期之间的时间间隔,他每个两个时钟脉冲周期输出一次数据,大大地缩短了存取时间,使存储速度提高30%。EDO一般是72脚,EDO内存已经被SDRAM所取代。

   S(SYSNECRONOUS)DRAM

   同步动态随机存取存储器:SDRAM为168脚,这是目前PENTIUM及以上机型使用的内存。SDRAM将CPU与RAM通过一个相同的时钟锁在一起,使CPU和RAM能够共享一个时钟周期,以相同的速度同步工作,每一个时钟脉冲的上升沿便开始传递数据,速度比EDO内存提高50%。

   DDR(DOUBLE DATA RAGE)RAM

   SDRAM的更新换代产品,他允许在时钟脉冲的上升沿和下降沿传输数据,这样不需要提高时钟的频率就能加倍提高SDRAM的速度。诞生

内存条的诞生

  内存芯片的状态一直沿用到286初期,鉴于它存在着无法拆卸更换的弊病,这对于计算机的发展造成了现实的阻碍。有鉴于此,内存条便应运而生了。将内存芯片焊接到事先设计好的印刷线路板上,而电脑主板上也改用内存插槽。这样就把内存难以安装更换的问题彻底解决了。

  在80286主板发布之前,内存并没有被世人所重视,这个时候的内存是直接固化在主板上,而且容量只有64 ~256KB,对于当时PC所运行的工作程序来说,这种内存的性能以及容量足以满足当时软件程序的处理需要。不过随着软件程序和新一代80286硬件平台的出现,程序和硬件对内存性能提出了更高要求,为了提高速度并扩大容量,内存必须以独立的封装形式出现,因而诞生了“内存条”概念。

  在80286主板刚推出的时候,内存条采用了SIMM(Single In-lineMemory Modules,单边接触内存模组)接口,容量为30pin、256kb,必须是由8 片数据位和1 片校验位组成1 个bank,正因如此,我们见到的30pin SIMM一般是四条一起使用。自1982年PC进入民用市场一直到现在,搭配80286处理器的30pin SIMM 内存是内存领域的开山鼻祖。随后,在1988 ~1990 年当中,PC 技术迎来另一个发展高峰,也就是386和486时代,此时CPU 已经向16bit 发展,所以30pin SIMM 内存再也无法满足需求,其较低的内存带宽已经成为急待解决的瓶颈,所以此时72pin SIMM 内存出现了,72pin SIMM支持32bit快速页模式内存,内存带宽得以大幅度提升。72pin SIMM内存单条容量一般为512KB ~2MB,而且仅要求两条同时使用,由于其与30pin SIMM 内存无法兼容,因此这个时候PC业界毅然将30pin SIMM 内存淘汰出局了。EDO DRAM(Extended Date Out RAM,外扩充数据模式存储器)内存,这是1991 年到1995 年之间盛行的内存条,EDO-RAM同FP DRAM极其相似,它取消了扩展数据输出内存与传输内存两个存储周期之间的时间间隔,在把数据发送给CPU的同时去访问下一个页面,故而速度要比普通DRAM快15~30%。工作电压为一般为5V,带宽32bit,速度在40ns以上,其主要应用在当时的486及早期的Pentium电脑上。

  在1991 年到1995 年中,让我们看到一个尴尬的情况,那就是这几年内存技术发展比较缓慢,几乎停滞不前,所以我们看到此时EDO RAM有72 pin和168 pin并存的情况,事实上EDO 内存也属于72pin SIMM 内存的范畴,不过它采用了全新的寻址方式。EDO 在成本和容量上有所突破,凭借着制作工艺的飞速发展,此时单条EDO 内存的容量已经达到4 ~16MB 。由于Pentium及更高级别的CPU数据总线宽度都是64bit甚至更高,所以EDO RAM与FPM RAM都必须成对使用。

SDRAM时代

  自Intel Celeron系列以及AMD K6处理器以及相关的主板芯片组推出后,EDO DRAM内存性能再也无法满足需要了,内存技术必须彻底得到个革新才能满足新一代CPU架构的需求,此时内存开始进入比较经典的SDRAM时代。

  第一代SDRAM 内存为PC66 规范,但很快由于Intel 和AMD的频率之争将CPU外频提升到了100MHz,所以PC66内存很快就被PC100内存取代,接着133MHz 外频的PIII以及K7时代的来临,PC133规范也以相同的方式进一步提升SDRAM 的整体性能,带宽提高到1GB/sec以上。由于SDRAM 的带宽为64bit,正好对应CPU 的64bit 数据总线宽度,因此它只需要一条内存便可工作,便捷性进一步提高。在性能方面,由于其输入输出信号保持与系统外频同步,因此速度明显超越EDO 内存。

  不可否认的是,SDRAM 内存由早期的66MHz,发展后来的100MHz、133MHz,尽管没能彻底解决内存带宽的瓶颈问题,但此时CPU超频已经成为DIY用户永恒的话题,所以不少用户将品牌好的PC100品牌内存超频到133MHz使用以获得CPU超频成功,值得一提的是,为了方便一些超频用户需求,市场上出现了一些PC150、PC166规范的内存。

  尽管SDRAM PC133内存的带宽可提高带宽到1064MB/S,加上Intel已经开始着手最新的Pentium 4计划,所以SDRAM PC133内存不能满足日后的发展需求,此时,Intel为了达到独占市场的目的,与Rambus联合在PC市场推广Rambus DRAM内存(称为RDRAM内存)。与SDRAM不同的是,其采用了新一代高速简单内存架构,基于一种类RISC(Reduced Instruction Set Computing,精简指令集计算机)理论,这个理论可以减少数据的复杂性,使得整个系统性能得到提高。

  在AMD与Intel的竞争中,这个时候是属于频率竞备时代,所以这个时候CPU的主频在不断提升,Intel为了盖过AMD,推出高频PentiumⅢ以及Pentium 4 处理器,因此Rambus DRAM内存是被Intel看着是未来自己的竞争杀手锏,Rambus DRAM内存以高时钟频率来简化每个时钟周期的数据量,因此内存带宽相当出色,如PC 1066 1066 MHz 32 bits带宽可达到4.2G Byte/sec,Rambus DRAM曾一度被认为是Pentium 4 的绝配。

  尽管如此,Rambus RDRAM 内存生不逢时,后来依然要被更高速度的DDR“掠夺”其宝座地位,在当时,PC600、PC700的Rambus RDRAM 内存因出现Intel820 芯片组“失误事件”、PC800 Rambus RDRAM因成本过高而让Pentium 4平台高高在上,无法获得大众用户拥戴,种种问题让Rambus RDRAM胎死腹中,Rambus曾希望具有更高频率的PC1066 规范RDRAM来力挽狂澜,但最终也是拜倒在DDR 内存面前。

DDR时代

  DDR SDRAM(Dual Date Rate SDRAM)简称DDR,也就是“双倍速率SDRAM“的意思。DDR可以说是SDRAM的升级版本,DDR在时钟信号上升沿与下降沿各传输一次数据,这使得DDR的数据传输速度为传统SDRAM的两倍。由于仅多采用了下降缘信号,因此并不会造成能耗增加。至于定址与控制信号则与传统SDRAM相同,仅在时钟上升缘传输。

  DDR 内存是作为一种在性能与成本之间折中的解决方案,其目的是迅速建立起牢固的市场空间,继而一步步在频率上高歌猛进,最终弥补内存带宽上的不足。第一代DDR200 规范并没有得到普及,第二代PC266 DDR SRAM(133MHz时钟×2倍数据传输=266MHz带宽)是由PC133 SDRAM内存所衍生出的,它将DDR 内存带向第一个高潮,目前还有不少赛扬和AMD K7处理器都在采用DDR266规格的内存,其后来的DDR333内存也属于一种过度,而DDR400内存成为目前的主流平台选配,双通道DDR400内存已经成为800FSB处理器搭配的基本标准,随后的DDR533 规范则成为超频用户的选择对象。

DDR2时代

  随着CPU 性能不断提高,我们对内存性能的要求也逐步升级。不可否认,仅仅依高频率提升带宽的DDR迟早会力不从心,因此JEDEC 组织很早就开始酝酿DDR2 标准,加上LGA775接口的915/925以及最新的945等新平台开始对DDR2内存的支持,所以DDR2内存将开始演义内存领域的今天。

  DDR2 能够在100MHz 的发信频率基础上提供每插脚最少400MB/s 的带宽,而且其接口将运行于1.8V 电压上,从而进一步降低发热量,以便提高频率。此外,DDR2 将融入CAS、OCD、ODT 等新性能指标和中断指令,提升内存带宽的利用率。从JEDEC组织者阐述的DDR2标准来看,针对PC等市场的DDR2内存将拥有400、533、667MHz等不同的时钟频率。高端的DDR2内存将拥有800、1000MHz两种频率。DDR-II内存将采用200-、220-、240-针脚的FBGA封装形式。最初的DDR2内存将采用0.13微米的生产工艺,内存颗粒的电压为1.8V,容量密度为512MB。

  内存技术在2005年将会毫无悬念,SDRAM为代表的静态内存在五年内不会普及。QBM与RDRAM内存也难以挽回颓势,因此DDR与DDR2共存时代将是铁定的事实。

  PC-100的“接班人”除了PC一133以外,VCM(VirXual Channel Memory)也是很重要的一员。VCM即“虚拟通道存储器”,这也是目前大多数较新的芯片组支持的一种内存标准,VCM内存主要根据由NEC公司开发的一种“缓存式DRAM”技术制造而成,它集成了“通道缓存”,由高速寄存器进行配置和控制。在实现高速数据传输的同时,VCM还维持着对传统SDRAM的高度兼容性,所以通常也把VCM内存称为VCM SDRAM。VCM与SDRAM的差别在于不论是否经过CPU处理的数据,都可先交于VCM进行处理,而普通的SDRAM就只能处理经CPU处理以后的数据,所以VCM要比SDRAM处理数据的速度快20%以上。目前可以支持VCM SDRAM的芯片组很多,包括:Intel的815E、VIA的694X等。

  3.RDRAM

  Intel在推出:PC-100后,由于技术的发展,PC-100内存的800MB/s带宽已经不能满足需求,而PC-133的带宽提高并不大(1064MB/s),同样不能满足日后的发展需求。Intel为了达到独占市场的目的,与Rambus公司联合在PC市场推广Rambus DRAM(DirectRambus DRAM),如图4-3所示。

  Rambus DRAM是:Rambus公司最早提出的一种内存规格,采用了新一代高速简单内存架构,基于一种RISC(Reduced Instruction Set Computing,精简指令集计算机)理论,从而可以减少数据的复杂性,使得整个系统性能得到提高。Rambus使用400MHz的16bit总线,在一个时钟周期内,可以在上升沿和下降沿的同时传输数据,这样它的实际速度就为400MHz×2=800MHz,理论带宽为(16bit×2×400MHz/8)1.6GB/s,相当于PC-100的两倍。另外,Rambus也可以储存9bit字节,额外的一比特是属于保留比特,可能以后会作为:ECC(ErroI·Checking and Correction,错误检查修正)校验位。Rambus的时钟可以高达400MHz,而且仅使用了30条铜线连接内存控制器和RIMM(Rambus In-line MemoryModules,Rambus内嵌式内存模块),减少铜线的长度和数量就可以降低数据传输中的电磁干扰,从而快速地提高内存的工作频率。不过在高频率下,其发出的热量肯定会增加,因此第一款Rambus内存甚至需要自带散热风扇。

DDR3时代

DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit预读升级为8bit预读。DDR3目前最高能够1600Mhz的速度,由于目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,因而首批DDR3内存模组将会从1333Mhz的起跳。在Computex大展我们看到多个内存厂商展出1333Mhz的DDR3模组。

  DDR3在DDR2基础上采用的新型设计:

  1.8bit预取设计,而DDR2为4bit预取,这样DRAM内核的频率只有接口频率的1/8,DDR3-800的核心工作频率只有100MHz。

  2.采用点对点的拓扑架构,以减轻地址/命令与控制总线的负担。

  3.采用100nm以下的生产工艺,将工作电压从1.8V降至1.5V,增加异步重置(Reset)与ZQ校准功能。

内存条种类之间的区别

DDR2与DDR的区别

  与DDR相比,DDR2最主要的改进是在内存模块速度相同的情况下,可以提供相当于DDR内存两倍的带宽。这主要是通过在每个设备上高效率使用两个DRAM核心来实现的。作为对比,在每个设备上DDR内存只能够使用一个DRAM核心。技术上讲,DDR2内存上仍然只有一个DRAM核心,但是它可以并行存取,在每次存取中处理4个数据而不是两个数据。

  与双倍速运行的数据缓冲相结合,DDR2内存实现了在每个时钟周期处理多达4bit的数据,比传统DDR内存可以处理的2bit数据高了一倍。DDR2内存另一个改进之处在于,它采用FBGA封装方式替代了传统的TSOP方式。

  然而,尽管DDR2内存采用的DRAM核心速度和DDR的一样,但是我们仍然要使用新主板才能搭配DDR2内存,因为DDR2的物理规格和DDR是不兼容的。首先是接口不一样,DDR2的针脚数量为240针,而DDR内存为184针;其次,DDR2内存的VDIMM电压为1.8V,也和DDR内存的2.5V不同。

  DDR2的定义:

  DDR2(Double Data Rate 2)SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降延同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上一代DDR内存预读取能力(即:4bit数据读预取)。换句话说,DDR2内存每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。

  此外,由于DDR2标准规定所有DDR2内存均采用FBGA封装形式,而不同于目前广泛应用的TSOP/TSOP-II封装形式,FBGA封装可以提供了更为良好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了坚实的基础。回想起DDR的发展历程,从第一代应用到个人电脑的DDR200经过DDR266、DDR333到今天的双通道DDR400技术,第一代DDR的发展也走到了技术的极限,已经很难通过常规办法提高内存的工作速度;随着Intel最新处理器技术的发展,前端总线对内存带宽的要求是越来越高,拥有更高更稳定运行频率的DDR2内存将是大势所趋。

  在了解DDR2内存诸多新技术前,先让我们看一组DDR和DDR2技术对比的数据。

  1.延迟问题:

  从上表可以看出,在同等核心频率下,DDR2的实际工作频率是DDR的两倍。这得益于DDR2内存拥有两倍于标准DDR内存的4BIT预读取能力。换句话说,虽然DDR2和DDR一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,但DDR2拥有两倍于DDR的预读取系统命令数据的能力。也就是说,在同样100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz。

  这样也就出现了另一个问题:在同等工作频率的DDR和DDR2内存中,后者的内存延时要慢于前者。举例来说,DDR 200和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400和DDR 400具有相同的带宽,它们都是3.2GB/s,但是DDR400的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。

  2.封装和发热量:

  DDR2内存技术最大的突破点其实不在于用户们所认为的两倍于DDR的传输能力,而是在采用更低发热量、更低功耗的情况下,DDR2可以获得更快的频率提升,突破标准DDR的400MHZ限制。

  DDR内存通常采用TSOP芯片封装形式,这种封装形式可以很好的工作在200MHz上,当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。这也就是DDR的核心频率很难突破275MHZ的原因。而DDR2内存均采用FBGA封装形式。不同于目前广泛应用的TSOP封装形式,FBGA封装提供了更好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了良好的保障。

  DDR2内存采用1.8V电压,相对于DDR标准的2.5V,降低了不少,从而提供了明显的更小的功耗与更小的发热量,这一点的变化是意义重大的。

  DDR2采用的新技术:

  除了以上所说的区别外,DDR2还引入了三项新的技术,它们是OCD、ODT和Post CAS。

  OCD(Off-Chip Driver):也就是所谓的离线驱动调整,DDR II通过OCD可以提高信号的完整性。DDR II通过调整上拉(pull-up)/下拉(pull-down)的电阻值使两者电压相等。使用OCD通过减少DQ-DQS的倾斜来提高信号的完整性;通过控制电压来提高信号品质。

  ODT:ODT是内建核心的终结电阻器。我们知道使用DDR SDRAM的主板上面为了防止数据线终端反射信号需要大量的终结电阻。它大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,终结电阻的大小决定了数据线的信号比和反射率,终结电阻小则数据线信号反射低但是信噪比也较低;终结电阻高,则数据线的信噪比高,但是信号反射也会增加。因此主板上的终结电阻并不能非常好的匹配内存模组,还会在一定程度上影响信号品质。DDR2可以根据自己的特点内建合适的终结电阻,这样可以保证最佳的信号波形。使用DDR2不但可以降低主板成本,还得到了最佳的信号品质,这是DDR不能比拟的。

  Post CAS:它是为了提高DDR II内存的利用效率而设定的。在Post CAS操作中,CAS信号(读写/命令)能够被插到RAS信号后面的一个时钟周期,CAS命令可以在附加延迟(Additive Latency)后面保持有效。原来的tRCD(RAS到CAS和延迟)被AL(Additive Latency)所取代,AL可以在0,1,2,3,4中进行设置。由于CAS信号放在了RAS信号后面一个时钟周期,因此ACT和CAS信号永远也不会产生碰撞冲突。

  总的来说,DDR2采用了诸多的新技术,改善了DDR的诸多不足,虽然它目前有成本高、延迟慢能诸多不足,但相信随着技术的不断提高和完善,这些问题终将得到解决。

DDR3与DDR2主要区别

  1.突发长度(Burst Length,BL)

  由于DDR3的预取为8bit,所以突发传输周期(Burst Length,BL)也固定为8,而对于DDR2和早期的DDR架构系统,BL=4也是常用的,DDR3为此增加了一个4bit Burst Chop(突发突变)模式,即由一个BL=4的读取操作加上一个BL=4的写入操作来合成一个BL=8的数据突发传输,届时可通过A12地址线来控制这一突发模式。而且需要指出的是,任何突发中断操作都将在DDR3内存中予以禁止,且不予支持,取而代之的是更灵活的突发传输控制(如4bit顺序突发)。

  2.寻址时序(Timing)

  就像DDR2从DDR转变而来后延迟周期数增加一样,DDR3的CL周期也将比DDR2有所提高。DDR2的CL范围一般在2~5之间,而DDR3则在5~11之间,且附加延迟(AL)的设计也有所变化。DDR2时AL的范围是0~4,而DDR3时AL有三种选项,分别是0、CL-1和CL-2。另外,DDR3还新增加了一个时序参数——写入延迟(CWD),这一参数将根据具体的工作频率而定。

  3.DDR3新增的重置(Reset)功能

  重置是DDR3新增的一项重要功能,并为此专门准备了一个引脚。DRAM业界很早以前就要求增加这一功能,如今终于在DDR3上实现了。这一引脚将使DDR3的初始化处理变得简单。当Reset命令有效时,DDR3内存将停止所有操作,并切换至最少量活动状态,以节约电力。

  在Reset期间,DDR3内存将关闭内在的大部分功能,所有数据接收与发送器都将关闭,所有内部的程序装置将复位,DLL(延迟锁相环路)与时钟电路将停止工作,而且不理睬数据总线上的任何动静。这样一来,将使DDR3达到最节省电力的目的。

  4.DDR3新增ZQ校准功能

  ZQ也是一个新增的脚,在这个引脚上接有一个240欧姆的低公差参考电阻。这个引脚通过一个命令集,通过片上校准引擎(On-Die Calibration Engine,ODCE)来自动校验数据输出驱动器导通电阻与ODT的终结电阻值。当系统发出这一指令后,将用相应的时钟周期(在加电与初始化之后用512个时钟周期,在退出自刷新操作后用256个时钟周期、在其他情况下用64个时钟周期)对导通电阻和ODT电阻进行重新校准。

  5.参考电压分成两个

  在DDR3系统中,对于内存系统工作非常重要的参考电压信号VREF将分为两个信号,即为命令与地址信号服务的VREFCA和为数据总线服务的VREFDQ,这将有效地提高系统数据总线的信噪等级。

  6.点对点连接(Point-to-Point,P2P)

  这是为了提高系统性能而进行的重要改动,也是DDR3与DDR2的一个关键区别。在DDR3系统中,一个内存控制器只与一个内存通道打交道,而且这个内存通道只能有一个插槽,因此,内存控制器与DDR3内存模组之间是点对点(P2P)的关系(单物理Bank的模组),或者是点对双点(Point-to-two-Point,P22P)的关系(双物理Bank的模组),从而大大地减轻了地址/命令/控制与数据总线的负载。而在内存模组方面,与DDR2的类别相类似,也有标准DIMM(台式PC)、SO-DIMM/Micro-DIMM(笔记本电脑)、FB-DIMM2(服务器)之分,其中第二代FB-DIMM将采用规格更高的AMB2(高级内存缓冲器)。

  7.逻辑Bank数量

  DDR2 SDRAM中有4Bank和8Bank的设计,目的就是为了应对未来大容量芯片的需求。而DDR3很可能将从2Gb容量起步,因此起始的逻辑Bank就是8个,另外还为未来的16个逻辑Bank做好了准备。

  8.根据温度自动自刷新(SRT,Self-Refresh Temperature)

  为了保证所保存的数据不丢失,DRAM必须定时进行刷新,DDR3也不例外。不过,为了最大的节省电力,DDR3采用了一种新型的自动自刷新设计(ASR,Automatic Self-Refresh)。当开始ASR之后,将通过一个内置于DRAM芯片的温度传感器来控制刷新的频率,因为刷新频率高的话,消电就大,温度也随之升高。而温度传感器则在保证数据不丢失的情况下,尽量减少刷新频率,降低工作温度。不过DDR3的ASR是可选设计,并不见得市场上的DDR3内存都支持这一功能,因此还有一个附加的功能就是自刷新温度范围(SRT,Self-Refresh Temperature)。通过模式寄存器,可以选择两个温度范围,一个是普通的的温度范围(例如0℃至85℃),另一个是扩展温度范围,比如最高到95℃。对于DRAM内部设定的这两种温度范围,DRAM将以恒定的频率和电流进行刷新操作。

  9.局部自刷新(RASR,Partial Array Self-Refresh)

  这是DDR3的一个可选项,通过这一功能,DDR3内存芯片可以只刷新部分逻辑Bank,而不是全部刷新,从而最大限度的减少因自刷新产生的电力消耗。这一点与移动型内存(Mobile DRAM)的设计很相似。

  10.封装(Packages)

  DDR3由于新增了一些功能,所以在引脚方面会有所增加,8bit芯片采用78球FBGA封装,16bit芯片采用96球FBGA封装,而DDR2则有60/68/84球FBGA封装三种规格。并且DDR3必须是绿色封装,不能含有任何有害物质。

  面向64位构架的DDR3显然在频率和速度上拥有更多的优势,此外,由于DDR3所采用的根据温度自动自刷新、局部自刷新等其它一些功能,在功耗方面DDR3也要出色得多,因此,它可能首先受到移动设备的欢迎,就像最先迎接DDR2内存的不是台式机而是服务器一样。在CPU外频提升最迅速的PC台式机领域,DDR3未来也是一片光明。目前Intel预计在明年第二季所推出的新芯片-熊湖(Bear Lake),其将支持DDR3规格,而AMD也预计同时在K9平台上支持DDR2及DDR3两种规格。

  内存异步工作模式包含多种意义,在广义上凡是内存工作频率与CPU的外频不一致时都可以称为内存异步工作模式。首先,最早的内存异步工作模式出现在早期的主板芯片组中,可以使内存工作在比CPU外频高33MHz或者低33MHz的模式下(注意只是简单相差33MHz),从而可以提高系统内存性能或者使老内存继续发挥余热。其次,在正常的工作模式(CPU不超频)下,目前不少主板芯片组也支持内存异步工作模式,例如Intel 910GL芯片组,仅仅只支持533MHz FSB即133MHz的CPU外频,但却可以搭配工作频率为133MHz的DDR 266、工作频率为166MHz的DDR 333和工作频率为200MHz的DDR 400正常工作(注意此时其CPU外频133MHz与DDR 400的工作频率200MHz已经相差66MHz了),只不过搭配不同的内存其性能有差异罢了。再次,在CPU超频的情况下,为了不使内存拖CPU超频能力的后腿,此时可以调低内存的工作频率以便于超频,例如AMD的Socket 939接口的Opteron 144非常容易超频,不少产品的外频都可以轻松超上300MHz,而此如果在内存同步的工作模式下,此时内存的等效频率将高达DDR 600,这显然是不可能的,为了顺利超上300MHz外频,我们可以在超频前在主板BIOS中把内存设置为DDR 333或DDR 266,在超上300MHz外频之后,前者也不过才DDR 500(某些极品内存可以达到),而后者更是只有DDR 400(完全是正常的标准频率),由此可见,正确设置内存异步模式有助于超频成功。

  目前的主板芯片组几乎都支持内存异步,英特尔公司从810系列到目前较新的875系列都支持,而威盛公司则从693芯片组以后全部都提供了此功能。

内存-发展简史

  内存发展简史

  起初,电脑所使用的内存是一块块的IC,我们必须把它们焊接到主机板上才能正常使用,一旦某一块内存IC坏了,必须焊下来才能更换,这实在是太费劲了。后来,电脑设计人员发明了模块化的条装内存,每一条上集成了多块内存IC,相应地,在主板上设计了内存插槽,这样,内存条就可随意拆卸了,从此,内存的维修和扩充都变得非常方便。

  根据内存条上的引脚多少,我们可以把内存条分为30线、72线、168线等几种。30线与72线的内存条又称为单列存储器模块SIMM,168线的内存条又称为双列存储器模块DIMM。目前30线内存条已经没有了;前两年的流行品种是72线的内存条,其容量一般有4兆、8兆、16兆和32兆等几种;目前市场的主流品种是168线内存条,168线内存条的容量一般有16兆、32兆、64兆、128兆等几种,一般的电脑插一条就OK了,不过,只有基于VX、TX、BX芯片组的主板才支持168线的内存条。现如今,最流行的应属184线的内存条了。

内存的性能指标

  内存的性能指标

  评价内存条的性能指标一共有四个:

  (1) 存储容量:即一根内存条可以容纳的二进制信息量,如目前常用的168线内存条的存储容量一般多为32兆、64兆和128兆。而DDRII3普遍为1GB到2GB。

  (2) 存取速度(存储周期):即两次独立的存取操作之间所需的最短时间,又称为存储周期,半导体存储器的存取周期一般为60纳秒至100纳秒。

  (3) 存储器的可靠性:存储器的可靠性用平均故障间隔时间来衡量,可以理解为两次故障之间的平均时间间隔。

  (4) 性能价格比:性能主要包括存储器容量、存储周期和可靠性三项内容,性能价格比是一个综合性指标,对于不同的存储器有不同的要求。

内存品牌大全

 按字母查找品牌

  

AApacer(宇瞻)

  

BBIAOXING(标星)

  

CCorsair(海盗船)Chaintech(华东承启)

  

Eelixir(南亚易胜)

  

F富豪

  

GGEIL(金邦科技)G.SKILL(芝奇)GoldenMars(劲芯)

  

HHynix(现代)Honnex(宏连)

  

JRamax(记忆数码)KingYi(金亿)

  

KKingston(金士顿)KINGBOX(黑金刚)KINGTIGER(金泰克)KINGMAX(胜创)KINGXCON(金士刚)Kintell(金特尔)

  

Lleadmax(超胜科技)

  

MMAKWAY(迈威)

  

NNCP

  

OOCZ

  

PPatriot(博帝)PNYPQI(劲永)

  

RRamsta(瑞势)RAMOS(蓝魔)

  

SSamsung(三星)q誓苌戏

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/23698893/viewspace-1118767/,如需转载,请注明出处,否则将追究法律责任。

上一篇: 没有了~
下一篇: 没有了~
请登录后发表评论 登录
全部评论

注册时间:2010-04-10

  • 博文量
    1
  • 访问量
    385