ITPub博客

首页 > 大数据 > 数据分析 > 大数据时代的营销数据分析技能--用数字说话

大数据时代的营销数据分析技能--用数字说话

数据分析 作者:xx118xx528 时间:2014-02-26 00:33:48 0 删除 编辑
市场营销是企业的命脉,然而,为数不少的的市场部、销售部工作人员由于缺乏营销分析的概念
和方法,企业累积的大量数据得不到有效的利用,营销分析只停留在数据和信息的简单汇总和流
水帐式的通报,缺乏对客户、业务、营销、竞争方面的深入分析,结果决策者只能凭着本能的反
应来运作,决策存在很大的失误风险。本课程着眼于营销数据的分析和统计,教授如何挖掘数据
背后的规律和隐含的信息。通过学习本课程您将可以掌握营销数据分析的重要概念和高级技能,
提升科学管理和科学决策的水平,做出领导满意的分析报告!
陈老师不仅能为学员提供系统的数据分析技能培训,还自行开发了BladeOffice工具,为学员的日
常工作提供更多的辅助功能。
------------------------------------------------------------------------
一、大数据时代概述
“大数据”火了,但是大数据的应用已经有十几年的历史了,本节告诉你大数据是什么。
1.大数据的应用历史
2.大数据的全景视图
3.最热门的大数据工具有哪些
4.企业的市场和营销部门应该具备哪些大数据的技能?
5.CRISP方法论
案例演练:空降经理的烦恼,您来亲身体验一下数据分析的过程

二、构建企业的分析体系
本节介绍如何在企业内部实施大数据,利用大数据驱动企业的营销动作
1.大数据如何与企业的营销结合
a)营销动作和大数据的结合
b)岗位的设置和技能要求
2.分析模型的设计、实施工具
a)SPSS Clementine简介
b)SAS简介
c)SQL Analysis简介
d)Excel控件简介
3.数据的收集和准备
a)数据的来源
b)原始数据转换为业务数据

三、基于关键指标的分析方法
指标分析是一种快速的企业绩效分析手段,是衡量企业健康状况的健康指标, 本节介绍如何通过指标构建数据分析模型。
1.案例思考:从一张报表说起
2.传统的基于绩效考核指标分析的缺陷
3.把KPI指标和管理理念相结合,搭建分析模型分析营销状况
4.案例解析:
a)竞争力分析模型
b)利润分析模型

四、时间序列分析
时间序列分析的目的是掌握销售过程中出现的趋势、规律,优化产品组合和销售管理。
1.时间序列规律的三个方面
2.如何识别周期,认识同比的风险
3.趋势如何分析
4.案例解析
a)数据周期分析
b)库存风险预测
5.一元回归分析
a)案例:行业趋势分析

五、竞争的量化分析方法简介
1.宏观的行业竞争力分析矩阵
2.数据来源:根据市场竞争的四个层次确定
3.竞争的敏感性分析
4.快消品的品牌转换矩阵
5.媒体影响的量化研究

六、常用的统计学分析算法简介
数据分析不是空洞理论,还需要有科学的技术手段和方法,本节演示常见的数据分析算法。
1.协助客户分类:聚类分析
2.识别客户响应
a)类神经网络
b)决策树
c)逻辑斯蒂回归
3.时间序列预测
a)ARIMA
b)指数平滑

七、商业预测技术
预测是企业重要的决策依据,本节演示如何结合统计学算法构造一个成熟的预测模型。
1.预测责任者与支持者
2.预测的组织流程
3.不同的预测模型各自的优缺点
4.水平和趋势模型
5.季节模型
6.如何评估预测的偏差

八、数据挖掘
无差别的大众媒体营销已经无法满足零和的市场环境下的竞争要求。精确营销是现在及未来的发展方向,
精确营销的基础是精确的客户定位,本节通过案例演示来说明如何进行客户的响应分析。
1.精确营销与客户细分
2.客户细分的价值
3.基于数据驱动的细分
4.基于决策树的案例解析
5.结果的应用
<!-- 正文结束 -->

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/22160730/viewspace-1118210/,如需转载,请注明出处,否则将追究法律责任。

上一篇: 没有了~
下一篇: 没有了~
请登录后发表评论 登录
全部评论

注册时间:2009-07-21