ITPub博客

首页 > Linux操作系统 > Linux操作系统 > RAID6、RAID-DP及其他准RAID6原理

RAID6、RAID-DP及其他准RAID6原理

原创 Linux操作系统 作者:strongthink 时间:2009-10-26 22:44:53 0 删除 编辑

一、RAID5和XOR运算

XOR运算是数理逻辑的基本运算之一,在课本上的符号是一个圆圈里面一个加号。实在懒得用插入符号功能,大家就凑合着看吧。

多个数字XOR的时候,有两个特点:

A)结果与运算顺序无关。也就是 (a XOR b) XOR c = a XOR (b XOR c)。

B)各个参与运算的数字与结果循环对称。如果 a XOR b XOR c = d,那么a = b XOR c XOR d;b = a XOR c XOR d;c = a XOR b XOR d。

磁盘阵列中的RAID5之所以能够容错,就是利用了XOR运算的这些特点。上面例子中的a、b、c、d就可以看作是四颗磁盘上的数据,其中三个是应用数据,剩下一个是校验。碰到故障的时候,甭管哪个找不到了,都可以用剩下的三个数字XOR一下算出来。

在实际应用中,阵列控制器一般要先把磁盘分成很多条带(英文叫Stripe,注意不是Stripper),然后再对每组条带做XOR。

P1 = 数据a XOR 数据b XOR 数据c

P2 = 数据d XOR 数据e XOR 数据f

P3 = 数据g XOR 数据h XOR 数据i

P4 = 数据j XOR 数据k XOR 数据l

扫盲部分就讲这么多,再不懂就google吧,满山遍野都是RAID5算法的介绍。

二、RAID6和Reed-Solomon编码

本来想写成“李德-所罗门编码”,但那样就不方便大家一边看帖子一边google了。

Reed-Solomon编码是通讯领域中经常碰到的一个算法,已经有15年以上的历史了。(靠!讲存储嘛,跟通讯有个鸟关系?)

其实很多校验算法都是通讯领域最先研究出来,然后才应用到其他领域的。前面说到的XOR算法对一组数据只能产生一个校验,搞通讯的工程师们觉得不够可靠,于是就研究出很多能对一组数据产生多个校验的算法。Reed-Solomon编码是其中应用最广泛的一个,咱们以前经常用的ADSL、xDSL、高速Modem都有采用。后来手机、卫星电视、数字电视、CD唱片、DVD、条码系统、还有……(有完没完!说存储呢!)连高级点儿的服务器内存也用这个算法做校验和纠错。(总算跟存储沾上点儿边~)

现在存储的工程师也觉得RAID5中只能容忍一颗磁盘离线不够理想,需要一种容忍多颗磁盘离线的技术,自然就会想到Reed-Solomon编码啦。把这种算法应用到存储中,就可以让N颗磁盘的空间装应用数据,M颗磁盘的空间装校验码(对一组N个数据生成M个校验,但实际上校验码是分散在所有磁盘上的),这样只要离线的磁盘不大于M颗,数据就不会丢失。

Reed-Solomon编码理论中有一个公式:

N + M + 1 = 2的b次方(在电脑里写公式真是麻烦!)

其中b是校验字的位数。(校验字是生成校验过程需要用的一个东东,不是最后的校验码。)举例来说,如果用8位的字节做校验字,那么M + N = 255,而RAID6是特指M = 2,这样N = 253。

就是说,用8位字节做校验字的话,理论上一个RAID6的磁盘组可以容下253颗磁盘。

当然啦,实际应用中,太多的磁盘一起做运算会严重影响性能,所以阵列控制器和芯片的设计者都会把磁盘组的容量限制在16颗左右。

(做了这么多无聊算术题,还是没提RAID6到底是啥!)

喂!喂!别走啊,很快就讲到RAID6的实现啦。

卖了这么多关子,实在是因为RAID6这个概念所指的意义太混乱。从功能上讲,能实现两颗磁盘掉线容错的,都叫RAID6。(至少我认识的销售们都这么认为。)但是实行这一功能的方式却有很多很多。(沉默3分钟)

真的很多!哎哟!别打啊~

Intel的P+Q RAID6,NetApp的RAID-DP,HP的RAID5-DP,还要很多实验室中的原型机都能实行这个功能。但是由于机制不同,各种所谓的RAID6,其性能表现、磁盘负载分布、错误恢复方式都完全不同。

你让我从哪说起好哩?

三、基于P+Q的RAID6

在Intel的80333IOP芯片中,有一个新的引擎叫P+Q单元,是专门用来处理RAID6加速的。详情请查阅Intel官方网站,

对比RAID5的机制,Intel的P+Q RAID6是这样写磁盘的:

这里每个条带中的P,跟RAID5里面的P意义完全一样,就是同一条带中除Q以外其它数据的XOR运算结果。

而Q呢,就是理解这个技术的关键所在了。

“把条带中每个数据分别GF一下,然后这些结果再XOR,就得到Q。”

在Intel 80333IOP中存着两个表格,分别对应GF正向变换和反向变换。任何一个8位二进制数,都可以直接在表格中查到对应的GF变换结果。

这两个表格分别在Intel 80333IOP研发手册的第445页和446页,不过我估计大部分人会懒得去看。也是,看了又能怎么样呢?反正Intel已经把那玩意固化到芯片里了。

如果一颗磁盘掉线,根本不需要Q用P直接就搞定了,跟RAID5一样。

如果两颗磁盘掉线,又分做两种情况:

A)坏的地方有Q。这种情况跟RAID5坏一颗磁盘一样,用XOR就恢复了。

B)坏的地方没有Q。用GF变换加XOR一起搞定。

结合上面表格的例子,如果磁盘5和磁盘6掉线。那条带1和条带2就属于情况A;而条带3、4、5和6属于情况B。

其实P+Q只是一种算法,Intel IOP里面的硬件加速引擎并不是必须的。有一些产品就采用了PowerPC等不含P+Q引擎的CPU,一样不耽误P+Q RAID6功能。

GF转换表在软件里完成就是了。

四、Dual-XOR

除了P+Q RAID6,还要好多种办法可以实现对两颗磁盘掉线的容错。
Intel提到一种Dual-XOR算法,这种方法就是取横向和斜向两个方向进行XOR运算,这样每个应用数据都在两个校验中留下痕迹,当两颗磁盘掉线时,就可以恢复数据。
但是Dual-XOR的恢复工作异常复杂艰苦,并不实用。很多技术人员研究这种算法的意义,完全是把它当作未经优化的原型思想。
如图,Pa是横向的校验,跟RAID5完全一样:
Pa1 = 数据a XOR 数据b
Pa2 = 数据c XOR 数据d
Pa6 = 数据k XOR 数据l
Pb是斜向校验,定义为:
Pb4 = 数据a XOR Pa2 XOR数据f
Pb5 = 数据c XOR 数据e XOR Pa4
Pb6 = Pa3 XOR数据h XOR 数据j
可以看出Dual-XOR的校验生成过程比P+Q要简单,但是根据“麻烦守恒定律”,正向工作简单的事情,一般反向工作都会复杂。
备份和恢复一般也遵循这个规律。
(别跟我提CDP,那东西是遵循的是广义麻烦守恒定律。每个I/O都打个时间标签,还都当宝贝存着不扔,这能是个不麻烦的事吗?Sorry,又扯远了。)

当两颗磁盘掉线的时候,Dual-XOR的算法只能支持逐个数据块的恢复,而且不同条带之间还要共同参与计算。
比如图中的磁盘1和2掉线,恢复数据e的时候,就要至少动用到数据f、Pb3、Pa4和Pb5。而数据c和Pa3的恢复还要依赖数据e的恢复。
总之恢复起来是件贼头痛的事情!
五、NetApp RAID-DP
虽然Intel的Dual-XOR理论意义大于实际意义,但其改良的版本RAID-DP却已经被NetApp产品化。NetApp之所以喜欢这个类似Dual-XOR的RAID-DP算法,原因也很简单。
NetApp原本用的就是RAID4,而不是RAID5,其算法的中心思想就是每次I/O只跟两颗磁盘打交道就OK,自然就不会在乎RAID-DP中很多动作都只跟两、三颗磁盘打交道。
这个递归式数据恢复机制简直像在玩RPG游戏,但是对WAFL文件系统来说,却的确是最合适的选择之一。
六、五花八门的“准RAID6”
除了RAID-DP,还有X-Code编码、ZZS编码、Park编码……都可以看做是“准RAID6”。
X-Code编码
P3x = 数据33 XOR 数据35 XOR 数据32
Px4 = 数据44 XOR 数据24 XOR 数据54
X-Code从理论上看,的确是个负载均衡、计算简单(只有XOR,没有类似GF一样的变换)、磁盘对称度很高的算法。但是实际应用还是有问题。
上图的例子是5颗磁盘的X-Code编码方式,例子中的5个条带是一个整体,一起处理。如果写入的数据不多,没有写满前3个条带,就需要在写入的同时,把未更新的数据读出来,凑齐3x5个数据,再一起计算校验码。
如果是6颗磁盘,那就要6个条带作为一个整体。
7颗磁盘一个RAID组,就需要7个条带一个整体。
8颗磁盘一个RAID组,就需要8个条带一个整体。
9颗磁盘一个RAID组,就需要9个条带一个整体。
10颗磁盘一个RAID组,就需要10个条带一个整体……
总之这个算法的“重复单元”有点大。在实际应用中,这么大的“重复单元”使X-Code的应用面临两个问题:计算量大和空间浪费。(可能还有其他问题,比如名字太难听,总让人联想到黄色的东东。)
ZZS编码
ZZS也叫俄罗斯编码,bingo!猜对了,真聪明。这就是三个俄罗斯人在1983年提出的一种编码方式,ZZS就是三个人名字首字母缩写,跟S.H.E.演唱组的命名规则一样。
与X-Code相比,ZZS的“重复单元”就小很多——7颗磁盘的时候,3个条带是一个整体。
人家ZZS论文里给出的是数学公式:n颗磁盘的时候,(n-1)/2个条带是一个整体。
从这个公式你应该能发现ZZS编码的一个要求……(我知道,只支持单数颗磁盘。)
嘿嘿!你错了!实际上,ZZS算法只支持磁盘的个数为素数:……5、7、11、13、17……
不过人家ZZS组合(暂时就这么称呼吧)也指出,ZZS算法支持其中一颗磁盘上面全写0。这样就可以在应用中支持4、6、10、12、16……(素数-1)颗盘了。
 Park编码
相比俄国人训练有素的数学功底,美国人既没有兴趣,也没有耐心再从算法上去优化“双重校验”的技术。但是美国人讲求实际的思想还是挺值得称道。
这不,人家Park就说了,“研究了这么多算法,最终目的不就是坏两颗盘数据仍可恢复吗。到头来算法搞得那么复杂,还不如我的看家本领——穷举法——更实在。”
Park同志是这样说的,也是这样做的(凝重的音乐声响起~)
他编了一个程序,让计算机帮他搜索给定磁盘数量的校验分布模式。
结果你猜怎么着,人家还真有收获。从3颗磁盘到38颗磁盘,除了8颗磁盘和9颗磁盘的情况,其他情况Park都找到了满足要求的校验分布模式。
什么?你问满足的是什么要求?两颗磁盘掉线数据可恢复啊。汗!
后来,一个名叫徐力浩(音)的中国人补上了8颗盘和9颗盘的校验分布表。(咱们中国人到底还是比米国人聪明那么一点点,哈~)
现在Park编码已经对从3颗到38磁盘的所有情况,都能给出双重校验分布方法。但是各种分布方法之间根本没有联系,所以只能在给定磁盘数量的时候,去查Park编码表。
Park编码的样子都是以3个条带为一个“重复单元”,其中1个条带专门用来存校验,另外2个存数据。

 

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/21845741/viewspace-617480/,如需转载,请注明出处,否则将追究法律责任。

上一篇: 关于RAID
请登录后发表评论 登录
全部评论

注册时间:2009-06-12

  • 博文量
    25
  • 访问量
    40758