ITPub博客

首页 > 大数据 > 数据挖掘 > 数据挖掘前景和热点

数据挖掘前景和热点

数据挖掘 作者:jbriceno 时间:2013-05-03 18:31:49 0 删除 编辑
数据挖掘的前景
  随着KDD在学术界和工业界的影响越来越大,国际KDD组委会于1995年把专题讨论会更名为国际会议,在加拿大蒙特利尔市召开了第一届KDD国际学术会议,以后每年召开一次。近年来,KDD在研究和应用方面发展迅速,尤其是在商业和银行领域的应用比研究的发展速度还要快。
  
目前,国外数据挖掘的发展趋势其研究方面主要有:对知识发现方法的研究进一步发展,如近年来注重对Bayes(贝叶斯)方法以及Boosting方法的研究和提高;传统的统计学回归法在KDD中的应用;KDD与数据库的紧密结合。在应用方面包括:KDD商业软件工具不断产生和完善,注重建立解决问题的整体系统,而不是孤立的过程。用户主要集中在大型银行、保险公司、电信公司和销售业。国外很多计算机公司非常重视数据挖掘的开发应用,IBM和微软都成立了相应的研究中心进行这方面的工作,此外,一些公司的相关软件也开始在国内销售,如Platinum、BO以及IBM。
国内从事数据挖掘研究的人员主要在大学,也有部分在研究所或公司。所涉及的研究领域很多,一般集中于学习算法的研究、数据挖掘的实际应用以及有关数据挖掘理论方面的研究。目前进行的大多数研究项目是由政府资助进行的,如国家自然科学基金、863计划、"九五"计划等,但还没有关于国内数据挖掘产品的报道。   

一份最近的Gartner报告中列举了在今后3~5年内对工业将产生重要影响的五项关键技术,其中KDD和人工智能排名第一。同时,这份报告将并行计算机体系结构研究和KDD列入今后5年内公司应该投资的10个新技术领域。

可以看出,数据挖掘的研究和应用受到了学术界和实业界越来越多的重视。进行数据挖掘的开发并不需要太多的积累,国内软件厂家如果进入该领域,将处于和国外公司实力相差不很多的起跑线上,并且,现在关于数据挖掘的一些研究成果可以在Internet上免费获取,这更是一个可以利用的条件。我们希望数据挖掘能够引起国内实业界更多的重视,同时也希望能够有更多的国内软件厂商进入该领域,一起促进数据挖掘技术在中国的应用。

 
  摘自《互联网周刊 》
    
 数据挖掘热点
  就目前来看,将来的几个热点包括网站的数据挖掘(Web site data mining)、生物信息或基因(Bioinformatics/genomics)的数据挖掘及其文本的数据挖掘(Textual mining)。下面就这几个方面加以简单介绍。
    
- 网站的数据挖掘(Web site data mining)
  需求:
  随着Web技术的发展,各类电子商务网站风起云涌,建立起一个电子商务网站并不困难,困难的是如何让您的电子商务网站有效益。要想有效益就必须吸引客户,增加能带来效益的客户忠诚度。电子商务业务的竞争比传统的业务竞争更加激烈,原因有很多方面,其中一个因素是客户从一个电子商务网站转换到竞争对手那边,只需点击几下鼠标即可。网站的内容和层次、用词、标题、奖励方案、服务等任何一个地方都有可能成为吸引客户、同时也可能成为失去客户的因素。而同时电子商务网站每天都可能有上百万次的在线交易,生成大量的记录文件(Logfiles)和登记表,如何对这些数据进行分析和挖掘,充分了解客户的喜好、购买模式,甚至是客户一时的冲动,设计出满足于不同客户群体需要的个性化网站,进而增加其竞争力,几乎变得势在必行。若想在竞争中生存进而获胜,就要比您的竞争对手更了解客户。
 
  电子商务网站数据挖掘:
  在对网站进行数据挖掘时,所需要的数据主要来自于两个方面:一方面是客户的背景信息,此部分信息主要来自于客户的登记表;而另外一部分数据主要来自浏览者的点击流(Click-stream),此部分数据主要用于考察客户的行为表现。但有的时候,客户对自己的背景信息十分珍重,不肯把这部分信息填写在登记表上,这就会给数据分析和挖掘带来不便。在这种情况之下,就不得不从浏览者的表现数据中来推测客户的背景信息,进而再加以利用。
就分析和建立模型的技术和算法而言,网站的数据挖掘和原来的数据挖掘差别并不是特别大,很多方法和分析思想都可以运用。所不同的是网站的数据格式有很大一部分来自于点击流,和传统的数据库格式有区别。因而对电子商务网站进行数据挖掘所做的主要工作是数据准备。目前,有很多厂商正在致力于开发专门用于网站挖掘的软件。

 
    
- 生物信息或基因的数据挖掘
  生物信息或基因数据挖掘则完全属于另外一个领域,在商业上很难讲有多大的价值,但对于人类却受益非浅。例如,基因的组合千变万化,得某种病的人的基因和正常人的基因到底差别多大?能否找出其中不同的地方,进而对其不同之处加以改变,使之成为正常基因?这都需要数据挖掘技术的支持。

对于生物信息或基因的数据挖掘和通常的数据挖掘相比,无论在数据的复杂程度、数据量还有分析和建立模型的算法而言,都要复杂得多。从分析算法上讲,更需要一些新的和好的算法。现在很多厂商正在致力于这方面的研究。但就技术和软件而言,还远没有达到成熟的地步。
    
- 文本的数据挖掘(Textualmining)
  人们很关心的另外一个话题是文本数据挖掘。举个例子,在客户服务中心,把同客户的谈话转化为文本数据,再对这些数据进行挖掘,进而了解客户对服务的满意程度和客户的需求以及客户之间的相互关系等信息。从这个例子可以看出,无论是在数据结构还是在分析处理方法方面,文本数据挖掘和前面谈到的数据挖掘相差很大。文本数据挖掘并不是一件容易的事情,尤其是在分析方法方面,还有很多需要研究的专题。目前市场上有一些类似的软件,但大部分方法只是把文本移来移去,或简单地计算一下某些词汇的出现频率,并没有真正的分析功能。

随着计算机计算能力的发展和业务复杂性的提高,数据的类型会越来越多、越来越复杂,数据挖掘将发挥出越来越大的作用。
<!-- 正文结束 -->

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/21816198/viewspace-1118916/,如需转载,请注明出处,否则将追究法律责任。

上一篇: 没有了~
下一篇: 没有了~
请登录后发表评论 登录
全部评论

注册时间:2009-06-04