ITPub博客

首页 > Linux操作系统 > Linux操作系统 > 聊聊Oracle聚簇Cluster(上)

聊聊Oracle聚簇Cluster(上)

原创 Linux操作系统 作者:realkid4 时间:2013-10-15 14:21:55 2 删除 编辑

 

Oracle数据表三种基本类型:堆表Heap Table、索引组织表IOT和聚簇表Cluster。在我们日常中,最常用也是适应性最好的一种数据表就是堆表Heap Table。一般在没有特殊性能缺陷和特性要求的情况下,堆表是我们首先的选项。

 

IOT是一种融合数据到索引结构上的数据表类型。在笔者之前的文章中,详细介绍了IOT的结构、特性和适应场景,同时也对段溢出Segment Overflow、逻辑Rowid和Secondary Index等概念进行过阐述。

 

本篇我们介绍一下聚簇。

 

1、概说聚簇Cluster

 

应该说,三种数据表类型中,我们最不常用的结构应该是聚簇。聚簇也是和其他两种数据表差异最大的一种结构类型,最大的区别在于:聚簇是可以单独存在的。

 

在Oracle存储结构中,我们必须遵循两个概念就是对象和段Segment。我们可以创建很多对象,比如数据表、索引、视图,但是并不是每个对象都会“真刀真枪”的占用存储空间。Oracle空间分配是依据逻辑表空间、段对象、分区和块。只有数据表、索引等对象,才是可以真正使用空间的,分配Segment的。

 

堆表和索引组织表虽然有差别,但是本质上是类似的。堆表中,索引和数据表是分别的数据段结构,索引段和数据表段保持一致性。而IOT实现了索引和数据表段的合一。数据表的所有内容,依据主键顺序被保存在IOT索引树的叶子节点上。由于数据表内容的特殊性,比如字段过大的情况,都是通过溢出段实现。

 

而Cluster完全不同,Cluster是一种单独的段结构,或者笔者理解为单独的段空间容器。在没有数据表和索引的时候,Cluster段是可以单独存在的。依据一定的规则,如连接键(Join Key),可以将多个数据表数据保存在同一个段中。并且依据一定场景实现快速检索连接。

 

我们为什么使用Cluster数据表。最常见的解释是减少关联检索时候进行IO的数量。传统的数据表结构,两个表连接,至少要进行两次数据块的检索。而Cluster过程,由于都是存储在一起(注意:相同Segment)。

 

Cluster进行使用的时候,有两个类型进行选择,分别为B树Cluster和哈希Hash Cluster。两者既有相同的结构,又有细微的差异。

 

2、实验环境介绍

 

我们选择Oracle 11gR2进行实验。

 

 

SQL> select * from v$version;

 

BANNER

-----------------------------------------------------------------------

Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - Production

PL/SQL Release 11.2.0.3.0 - Production

CORE    11.2.0.3.0  Production

 

TNS for Linux: Version 11.2.0.3.0 - Production

NLSRTL Version 11.2.0.3.0 – Production

 

 

创建专门的用户进行实验。

 

 

SQL> create user test identified by test default tablespace users;

User created

 

SQL> grant resource, connect to test;

Grant succeeded

 

SQL> grant create cluster to test;

Grant succeeded

 

SQL> grant select any table to test;

Grant succeeded

 

SQL> grant select any dictionary to test;

Grant succeeded

 

 

3、B树Cluster实验

 

通过一系列的实验,我们来探讨发现Cluster数据表的特性和使用。Oracle Cluster不是随任何数据表对象创建,而是可以通过SQL语句create cluster来进行创建。

 

 

SQL> create cluster emp_dept (deptno number) size 600;

Cluster created

 

SQL> select cluster_name, tablespace_name, cluster_type, key_size from user_clusters;

 

CLUSTER_NAME          TABLESPACE_NAME              CLUSTER_TYPE   KEY_SIZE

-------------------------- -------------------------- ------------ ----------

EMP_DEPT                       USERS                   INDEX               600

 

 

注意两个问题,一个是创建cluster的过程中我们指定的size 600。这个是用于指定cluster键大致大小,指定之后,就可以实现空间的预留。如果这个取值设置不合理,容易引起Cluster结构的混乱。

 

另一个问题是tablespace_name,Cluster对象既然包括了tablespace信息,就必然是占用空间的,也必然以segment的形式出现。

 

 

SQL> select SEGMENT_TYPE, extents, HEADER_FILE, HEADER_BLOCK, BYTES, BLOCKS from dba_segments where wner='TEST' and segment_name='EMP_DEPT';

 

SEGMENT_TYPE          EXTENTS HEADER_FILE HEADER_BLOCK      BYTES     BLOCKS

------------------ ---------- ----------- ------------ ---------- ----------

CLUSTER                     1           4          522      65536          8

 

 

注意:此时我们没有创建数据表或者索引,但是cluster segment已经存在出现。下面我们依托cluster emp_dept创建数据表。

 

 

SQL> create table emp (empno number, empname varchar2(10), deptno number) cluster emp_dept(deptno);

Table created

 

SQL> select SEGMENT_TYPE, extents, HEADER_FILE, HEADER_BLOCK, BYTES, BLOCKS from dba_segments where wner='TEST' and segment_name='EMP_DEPT';

SEGMENT_TYPE          EXTENTS HEADER_FILE HEADER_BLOCK      BYTES     BLOCKS

------------------ ---------- ----------- ------------ ---------- ----------

CLUSTER                     1           4          522      65536          8

 

SQL> select SEGMENT_TYPE, extents, HEADER_FILE, HEADER_BLOCK, BYTES, BLOCKS from dba_segments where wner='TEST' and segment_name='EMP';

SEGMENT_TYPE          EXTENTS HEADER_FILE HEADER_BLOCK      BYTES     BLOCKS

------------------ ---------- ----------- ------------ ---------- ----------

 

 

依托cluster创建数据表的时候,要指定出哪个字段是cluster的key键值。从段结构数据字典中,我们不能看到数据表的段信息,只有cluster的段信息。从dba_tables中,我们的确看到数据表成功创建。

 

 

SQL> select segment_created from dba_tables where wner='TEST' and table_name='EMP';

SEGMENT_CREATED

---------------

YES

 

 

此时,我们尝试往数据表emp添加数据,是被禁止的。

 

 

SQL> insert into emp select empno, ename, deptno from scott.emp;

insert into emp select empno, ename, deptno from scott.emp

 

ORA-02032: 聚簇表无法在簇索引建立之前使用

 

 

在这里,我们意识到使用cluster还需要创建专门的cluster index。为了进行连接测试,先创建第二张数据表。

 

 

SQL> create table dept (deptno number primary key, deptname varchar2(10)) cluster emp_dept(deptno);

 

Table created

 

SQL> select segment_created from dba_tables where wner='TEST' and table_name='DEPT';

 

SEGMENT_CREATED

---------------

YES

 

 

同时,创建了需要的索引结构。

 

 

SQL> create index idx_emp_dept on cluster emp_dept;

Index created

 

 

SQL> select SEGMENT_TYPE, extents, HEADER_FILE, HEADER_BLOCK, BYTES, BLOCKS from dba_segments where wner='TEST' and segment_name in ('EMP_DEPT','IDX_EMP_DEPT');

 

SEGMENT_TYPE          EXTENTS HEADER_FILE HEADER_BLOCK      BYTES     BLOCKS

------------------ ---------- ----------- ------------ ---------- ----------

INDEX                       1           4          538      65536          8

CLUSTER                     1           4          522      65536          8

 

 

SQL> select SEGMENT_TYPE, extents, HEADER_FILE, HEADER_BLOCK, BYTES, BLOCKS from dba_segments where wner='TEST' and segment_name='EMP';

 

SEGMENT_TYPE          EXTENTS HEADER_FILE HEADER_BLOCK      BYTES     BLOCKS

------------------ ---------- ----------- ------------ ---------- ----------

 

SQL> select SEGMENT_TYPE, extents, HEADER_FILE, HEADER_BLOCK, BYTES, BLOCKS from dba_segments where wner='TEST' and segment_name='DEPT';

 

SEGMENT_TYPE          EXTENTS HEADER_FILE HEADER_BLOCK      BYTES     BLOCKS

------------------ ---------- ----------- ------------ ---------- ----------

 

--Index元数据信息

SQL> select index_type, table_name, table_type, UNIQUENESS from dba_indexes where wner='TEST' and index_name='IDX_EMP_DEPT';

 

INDEX_TYPE                TABLE_NAME                     TABLE_TYPE  UNIQUENESS

--------------------------- ---------------------------- ----------- ----------

CLUSTER                     EMP_DEPT                       CLUSTER     UNIQUE

 

 

我们创建了两张数据表和一个索引,只有cluster和索引成为了段对象。明显的是两个数据表都包括保存在了cluster段结构中。

 

创建索引的过程和普通索引是不同的。我们没有给数据表建索引,而是给cluster对象。从dba_indexes视图中,可以看到差异和不同。

 

下面我们灌入数据。

 

 

SQL> insert into dept select deptno, dname from scott.dept;

4 rows inserted

 

SQL> insert into emp select empno, ename, deptno from scott.emp;

14 rows inserted

 

SQL> commit;

Commit complete

 

 

此时,段结构依然维持一个cluster和一个索引的形态。

 

 

SQL> select SEGMENT_TYPE, extents, HEADER_FILE, HEADER_BLOCK, BYTES, BLOCKS from dba_segments where wner='TEST' and segment_name='EMP';

 

SEGMENT_TYPE          EXTENTS HEADER_FILE HEADER_BLOCK      BYTES     BLOCKS

------------------ ---------- ----------- ------------ ---------- ----------

 

SQL> select SEGMENT_TYPE, extents, HEADER_FILE, HEADER_BLOCK, BYTES, BLOCKS from dba_segments where wner='TEST' and segment_name='DEPT';

 

SEGMENT_TYPE          EXTENTS HEADER_FILE HEADER_BLOCK      BYTES     BLOCKS

------------------ ---------- ----------- ------------ ---------- ----------

 

SQL> select SEGMENT_TYPE, extents, HEADER_FILE, HEADER_BLOCK, BYTES, BLOCKS from dba_segments where wner='TEST' and segment_name in ('EMP_DEPT','IDX_EMP_DEPT');

 

SEGMENT_TYPE          EXTENTS HEADER_FILE HEADER_BLOCK      BYTES     BLOCKS

------------------ ---------- ----------- ------------ ---------- ----------

CLUSTER                     1           4          522      65536          8

INDEX                       1           4          538      65536          8

 

 

使用cluster最大的好处在于连接,我们查看一下连接情况下的执行计划。

 

 

 

SQL> explain plan for select * from emp a, dept b where a.deptno=b.deptno;

Explained

 

SQL> select * from table(dbms_xplan.display);

 

PLAN_TABLE_OUTPUT

-------------------------------------------------------------------------------

Plan hash value: 1709228156

-------------------------------------------------------------------------------

| Id  | Operation            | Name         | Rows  | Bytes | Cost (%CPU)| Time

-------------------------------------------------------------------------------

|   0 | SELECT STATEMENT      |             |    14 |   350 |     6   (0)| 00:0

|   1 |  NESTED LOOPS         |             |    14 |   350 |     6   (0)| 00:0

|   2 |   TABLE ACCESS FULL   | DEPT        |     4 |    48 |     3   (0)| 00:0

|   3 |   TABLE ACCESS CLUSTER| EMP         |     4 |    52 |     1   (0)| 00:0

|*  4 |    INDEX UNIQUE SCAN  | IDX_EMP_DEPT |    1 |       |     0   (0)| 00:0

-------------------------------------------------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

   4 - access("A"."DEPTNO"="B"."DEPTNO")

 

16 rows selected

 

 

cluster本质上就是一个容器,如果我们需要删除cluster,需要将其中数据表对象全部删除之后,方可执行。或者使用including tables子句。

 

 

SQL> drop cluster emp_dept;

drop cluster emp_dept

 

ORA-00951: 簇非空

 

SQL> drop cluster emp_dept including tables;

Cluster dropped

 

 

本部分介绍的是B树聚簇,也是简单的一种聚簇形式。下面我们来讨论Hash Cluster的特点。

 

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/17203031/viewspace-774405/,如需转载,请注明出处,否则将追究法律责任。

请登录后发表评论 登录
全部评论
求道~

注册时间:2010-11-30

  • 博文量
    545
  • 访问量
    7688215