ITPub博客

首页 > Linux操作系统 > Linux操作系统 > CUBE学习

CUBE学习

原创 Linux操作系统 作者:wujianbo702 时间:2009-08-02 22:21:52 0 删除 编辑
为了介绍cube函数我们再来看看另外一个使用rollup的例子
06:53:00 SQL> select area_code,bill_month,sum(local_fare) local_fare
06:53:37   2  from t
06:53:38   3  group by rollup(area_code,bill_month)
06:53:49   4  /

AREA_CODE  BILL_MONTH          LOCAL_FARE
---------- --------------- --------------
5761       200405             13060433.89
5761       200406             13318931.01
5761       200407             13710265.93
5761       200408             14135782.21
5761                          54225413.04
5762       200405             12643792.11
5762       200406             12795060.65
5762       200407             13224298.12
5762       200408             13376468.72
5762                          52039619.60
5763       200405             16649778.91
5763       200406             17120515.71
5763       200407             17487493.32
5763       200408             17928757.08
5763                          69186545.02
5764       200405             12487791.94
5764       200406             13295187.67
5764       200407             13444093.76
5764       200408             13929695.09
5764                          53156768.46
5765       200405             25057737.47
5765       200406             26058461.31
5765       200407             26301881.40
5765       200408             27130639.01
5765                         104548719.19
                             333157065.31

26 rows selected.

Elapsed: 00:00:00.00

系统只是根据rollup的第一个参数area_code对结果集的数据做了汇总处理,而没有对bill_month做汇总分析处理,cube函数就是为了这个而设计的.
下面,让我们看看使用cube函数的结果


06:58:02 SQL> select area_code,bill_month,sum(local_fare) local_fare
06:58:30   2  from t
06:58:32   3  group by cube(area_code,bill_month)
06:58:42   4  order by area_code,bill_month nulls last
06:58:57   5  /

AREA_CODE  BILL_MONTH          LOCAL_FARE
---------- --------------- --------------
5761       200405                13060.43
5761       200406                13318.93
5761       200407                13710.27
5761       200408                14135.78
5761                             54225.41
5762       200405                12643.79
5762       200406                12795.06
5762       200407                13224.30
5762       200408                1337***7
5762                             52039.62
5763       200405                16649.78
5763       200406                17120.52
5763       200407                17487.49
5763       200408                17928.76
5763                             69186.54
5764       200405                12487.79
5764       200406                13295.19
5764       200407                13444.09
5764       200408                13929.69
5764                             53156.77
5765       200405                25057.74
5765       200406                26058.46
5765       200407                26301.88
5765       200408                27130.64
5765                            104548.72
           200405                79899.53
           200406                82588.15
           200407                84168.03
           200408                86501.34

                                333157.05

30 rows selected.

Elapsed: 00:00:00.01

可以看到,在cube函数的输出结果比使用rollup多出了几行统计数据.这就是cube函数根据bill_month做的汇总统计结果

rollup 和 cube函数的再深入

从上面的结果中我们很容易发现,每个统计数据所对应的行都会出现null,
我们如何来区分到底是根据那个字段做的汇总呢,
这时候,oracle的grouping函数就粉墨登场了.
如果当前的汇总记录是利用该字段得出的,grouping函数就会返回1,否则返回0


  1  select decode(grouping(area_code),1,'all area',to_char(area_code)) area_code,
  2         decode(grouping(bill_month),1,'all month',bill_month) bill_month,
  3         sum(local_fare) local_fare
  4  from t
  5  group by cube(area_code,bill_month)
  6* order by area_code,bill_month nulls last
07:07:29 SQL> /

AREA_CODE  BILL_MONTH          LOCAL_FARE
---------- --------------- --------------
5761       200405                13060.43
5761       200406                13318.93
5761       200407                13710.27
5761       200408                14135.78
5761       all month             54225.41
5762       200405                12643.79
5762       200406                12795.06
5762       200407                13224.30
5762       200408                1337***7
5762       all month             52039.62
5763       200405                16649.78
5763       200406                17120.52
5763       200407                17487.49
5763       200408                17928.76
5763       all month             69186.54
5764       200405                12487.79
5764       200406                13295.19
5764       200407                13444.09
5764       200408                13929.69
5764       all month             53156.77
5765       200405                25057.74
5765       200406                26058.46
5765       200407                26301.88
5765       200408                27130.64
5765       all month            104548.72
all area   200405                79899.53
all area   200406                82588.15
all area   200407                84168.03
all area   200408                86501.34
all area   all month            333157.05

30 rows selected.

Elapsed: 00:00:00.01
07:07:31 SQL>


可以看到,所有的空值现在都根据grouping函数做出了很好的区分,这样利用rollup,cube和grouping函数,我们做数据统计的时候就可以轻松很多了.

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/165278/viewspace-611088/,如需转载,请注明出处,否则将追究法律责任。

上一篇: ROLLUP学习
下一篇: GROUPING SETS学习
请登录后发表评论 登录
全部评论

注册时间:2008-01-11

  • 博文量
    46
  • 访问量
    87084