ITPub博客

首页 > Linux操作系统 > Linux操作系统 > Memory Architecture

Memory Architecture

原创 Linux操作系统 作者:v_fantasy 时间:2009-02-09 22:26:13 0 删除 编辑

Database Buffer Cache

The database buffer cache is the portion of the SGA that holds copies of data blocks read from datafiles. All user processes concurrently connected to the instance share access to the database buffer cache.

The database buffer cache and the shared SQL cache are logically segmented into multiple sets. This organization into multiple sets reduces contention on multiprocessor systems.

Organization of the Database Buffer Cache

The buffers in the cache are organized in two lists: the write list and the least recently used (LRU) list. The write list holds dirty buffers, which contain data that has been modified but has not yet been written to disk. The LRU list holds free buffers, pinned buffers, and dirty buffers that have not yet been moved to the write list. Free buffers do not contain any useful data and are available for use. Pinned buffers are currently being accessed.

When an Oracle process accesses a buffer, the process moves the buffer to the most recently used (MRU) end of the LRU list. As more buffers are continually moved to the MRU end of the LRU list, dirty buffers age toward the LRU end of the LRU list.

The first time an Oracle user process requires a particular piece of data, it searches for the data in the database buffer cache. If the process finds the data already in the cache (a cache hit), it can read the data directly from memory. If the process cannot find the data in the cache (a cache miss), it must copy the data block from a datafile on disk into a buffer in the cache before accessing the data. Accessing data through a cache hit is faster than data access through a cache miss.

Before reading a data block into the cache, the process must first find a free buffer. The process searches the LRU list, starting at the least recently used end of the list. The process searches either until it finds a free buffer or until it has searched the threshold limit of buffers.

If the user process finds a dirty buffer as it searches the LRU list, it moves that buffer to the write list and continues to search. When the process finds a free buffer, it reads the data block from disk into the buffer and moves the buffer to the MRU end of the LRU list.

If an Oracle user process searches the threshold limit of buffers without finding a free buffer, the process stops searching the LRU list and signals the DBW0 background process to write some of the dirty buffers to disk.

 

The LRU Algorithm and Full Table Scans

When the user process is performing a full table scan, it reads the blocks of the table into buffers and puts them on the LRU end (instead of the MRU end) of the LRU list. This is because a fully scanned table usually is needed only briefly, so the blocks should be moved out quickly to leave more frequently used blocks in the cache.

You can control this default behavior. of blocks involved in table scans on a table-by-table basis. To specify that blocks of the table are to be placed at the MRU end of the list during a full table scan, use the CACHE clause when creating or altering a table or cluster. You can specify this behavior. for small lookup tables or large static historical tables to avoid I/O on subsequent accesses of the table.

Shared SQL Areas

A shared SQL area contains the parse tree and execution plan for a given SQL statement. Oracle saves memory by using one shared SQL area for SQL statements run multiple times, which often happens when many users run the same application.

Oracle allocates memory from the shared pool when a new SQL statement is parsed, to store in the shared SQL area. The size of this memory depends on the complexity of the statement. If the entire shared pool has already been allocated, Oracle can deallocate items from the pool using a modified LRU (least recently used) algorithm until there is enough free space for the new statement's shared SQL area. If Oracle deallocates a shared SQL area, the associated SQL statement must be reparsed and reassigned to another shared SQL area at its next execution.

PL/SQL Program Units and the Shared Pool

Oracle processes PL/SQL program units (procedures, functions, packages, anonymous blocks, and database triggers) much the same way it processes individual SQL statements. Oracle allocates a shared area to hold the parsed, compiled form. of a program unit. Oracle allocates a private area to hold values specific to the session that runs the program unit, including local, global, and package variables (also known as package instantiation) and buffers for executing SQL. If more than one user runs the same program unit, then a single, shared area is used by all users, while each user maintains a separate copy of his or her private SQL area, holding values specific to his or her session.

Individual SQL statements contained within a PL/SQL program unit are processed as described in the previous sections. Despite their origins within a PL/SQL program unit, these SQL statements use a shared area to hold their parsed representations and a private area for each session that runs the statement.

Dictionary Cache

The data dictionary is a collection of database tables and views containing reference information about the database, its structures, and its users. Oracle accesses the data dictionary frequently during SQL statement parsing. This access is essential to the continuing operation of Oracle.

The data dictionary is accessed so often by Oracle that two special locations in memory are designated to hold dictionary data. One area is called the data dictionary cache, also known as the row cache because it holds data as rows instead of buffers (which hold entire blocks of data). The other area in memory to hold dictionary data is the library cache. All Oracle user processes share these two caches for access to data dictionary information.

 

Allocation and Reuse of Memory in the Shared Pool

In general, any item (shared SQL area or dictionary row) in the shared pool remains until it is flushed according to a modified LRU algorithm. The memory for items that are not being used regularly is freed if space is required for new items that must be allocated some space in the shared pool. A modified LRU algorithm allows shared pool items that are used by many sessions to remain in memory as long as they are useful, even if the process that originally created the item terminates. As a result, the overhead and processing of SQL statements associated with a multiuser Oracle system is minimized.

When a SQL statement is submitted to Oracle for execution, Oracle automatically performs the following memory allocation steps:

  1. Oracle checks the shared pool to see if a shared SQL area already exists for an identical statement. If so, that shared SQL area is used for the execution of the subsequent new instances of the statement. Alternatively, if there is no shared SQL area for a statement, Oracle allocates a new shared SQL area in the shared pool. In either case, the user's private SQL area is associated with the shared SQL area that contains the statement.

    Note:

    A shared SQL area can be flushed from the shared pool, even if the shared SQL area corresponds to an open cursor that has not been used for some time. If the open cursor is subsequently used to run its statement, Oracle reparses the statement, and a new shared SQL area is allocated in the shared pool.
  2. Oracle allocates a private SQL area on behalf of the session. The location of the private SQL area depends on the type of connection established for the session.

Oracle also flushes a shared SQL area from the shared pool in these circumstances:

  • When the ANALYZE statement is used to update or delete the statistics of a table, cluster, or index, all shared SQL areas that contain statements referencing the analyzed schema object are flushed from the shared pool. The next time a flushed statement is run, the statement is parsed in a new shared SQL area to reflect the new statistics for the schema object.

  • If a schema object is referenced in a SQL statement and that object is later modified in any way, the shared SQL area is invalidated (marked invalid), and the statement must be reparsed the next time it is run.

  • If you change a database's global database name, all information is flushed from the shared pool.

  • The administrator can manually flush all information in the shared pool to assess the performance (with respect to the shared pool, not the data buffer cache) that can be expected after instance startup without shutting down the current instance. The statement ALTER SYSTEM FLUSH SHARED_POOL is used to do this.

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/16158219/viewspace-545688/,如需转载,请注明出处,否则将追究法律责任。

请登录后发表评论 登录
全部评论

注册时间:2008-10-07

  • 博文量
    98
  • 访问量
    181426